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>50 years of Anderson Localization

PHYSICAL REVIEW VOLUME 109, NUMBER 5 MARCH 1. 1958H

Absence of Diffusion in Certain Random Lattices

P, W, ANDERsox
Ball Taephone Laboratories, Muwrray Till, Now Sersey

{Received Octoher 10, 1937)

This paper presents & simple model for such processes as spin difuslon of conduction in the “impurity
hand.” These processes invalve tmnsport in a lattice which 15 in some senge randoem, and in them diffusion
s expected to take place via quantum jumps between localized sites, In this simple model the esential
rendomness 15 introdeced by requiring the snergy to vary mndemly from site to site. I is shown that at low
enpugh densities no diffusion at all can take place, and the crterin for transport Lo ootwr are gaven.




..very few believed it
[localization] at the time,
and even fewer saw its
importance; among those
who failed to fully
understand it at first was
certainly its author...

Nobel Lecture

Mobel Lecture, December 8, 1977

Local Moments and Localized States



Part 1.

Introduction and
History



Diffusion
Equation

Diffusion
constant

It can also be the probability to find a

0 (F. t) Can be density of particles or energy density.
, particle at a given point at a given time

Einstein theory
of Brownian
motion, 1905

The diffusion equation is valid for any random walk
provided that there is no memory (markovian process)



Diffusion
Equation

Density of
states

If electrons would be degenerate
and form a classical ideal gas

N
N, tot
William Sutherland T
(1859-1911)




Will a fluctuation (wave packet) spread ?

[_Dliffu/sion Constant ]
Einstein (1905): Random walk without memor
(1905) '} Y %O_szpzo = (r2) =Dt

always diffusion

Anderson (1958): For quantum particles extended states <FZ>T> Dt

not always localized states <r2>m—>const



Basic Quantum Mechanics:

2
o U = €| Yalr) = o) & -specrum

2m
| N Spectra
/ \

Continuous Discrete
Unbound states Bound states
=\ |2 —~d =\ |2 -|rl/s
‘l/ja(r)‘ L—>o0 )O(L ) ‘l/ja(r)‘ [F|—>o00 )O(e )
Extended states Localized states

L System size

d Number of the spatial dimensions



Localization of single-particle wave-functions.

Continuous limit:
Random potential

Ao (x) extended

localized



Spin Diffusion
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Localization of Ultrasound
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Localization of Light
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Localization of cold atoms

Billy et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature 453, 891- 894 (2008).

Roati et al. “Anderson localization of a non-interacting Bose-Einstein
condensate”. Nature 453, 895-898 (2008).



What about charge transport ?

Problem: electrons interact with each other



Einstein Relation (1905)
CConductivy |

Diffusion Constant

my of states ]

At zero temperature

Extended states (G oc 1%
- metal

S ———>const;, D———>const
—>00 L—x

!
_(;j Conductance Localized states GUe Lx. =0 D=0

/ = - insulator: 1

4 Conductivity

s=G




Part 2.

Anderson Model;

Anderson Metal
and
Anderson Insulator



Anderson - Lattice - tight binding model
I\/Iod e|  Onsite energies & - random

« Hopping matrix elements |ij

| and | are nearest
neighbors

otherwise

Anderson lransition

1 <1 1> 1
~ Insulator Metal
All eigenstates are localized There appear states extended

Localization length &, all over the whole system



One-dimensional Anderson Model




Why arbitrary

XXX

® weak hopping | is L ’ ®®® 8

not sufficient for ©®®6 48

n , ;, ©00e

the existence of ®® 0o
the diffusion &

process = diffusion

uantum mechanics is not marcovian
There is memory in quantum propagation s

Why? A’ Quantum Interference



uantum mechanics is not marcovian
T er'e IS memory in quantum propagation s

Why A’ Quantum Interference

N




uantum mechanics is not marcovian
T er'e IS memory in quantum propagation s

Why A’ Quantum Interference

> Memory!
¢ C_ﬁ pdr The particle can go around
the loop in two directions

Phase accumulated
when traveling
along the loop

2

Constructive mTer'ference == probability of the return to the origin gets
enhanced - quantum corrections reduce the diffusion constant.

Tendency towards localization

WEAK LOCALIZATION




Localization of single-particle wave-functions.

Continuous limit:
Random potential

Ao (x) extended
e DR d=1: All states are localized

d=2: All states are localized

d >2: Anderson transition

localized



nderson = -
model potential 52
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von Neumann & Wigner “noncrossing rule” -

I E,—& << |

Level repulsion

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467



Arnold V.I., Mathematical Methods of Classical Mechanics
(Springer-Verlag: New York), Appendix 10, 1989

In genefral, a multfiple spectrt#m in
typical families of quadratic forms g

is observed only for two or more E H (X) = E, (X)
parameters, while in one-parameter
families of general form the
spectrum is simple for all values of
the parameter. Under a change of
parameter in the typical one-
parameter family the eigenvalues
can approach closely, but when
they are sufficiently close, it is as if
they begin to repel one another.
The eigenvalues again diverge,
disappointing the person who
hoped, by changing the parameter
to achieve a multiple spectrum.
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von Neumann & Wigner “noncrossing rule” -

I E,—& <<

Level repulsion

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467

What about the eigenfunctions ?



g & I E,— & E,— & >>|
1 2
H _ E2 E]_ \/(;2 1) | |2 2 1 2 1

What about the eigenfunctions ?
.6 <= WL By, E

&, —&|>> | e, —&| <<
o)
Wio = ¢1,2 +0 B ¢2,1 v, ~d .+
e —&l, 12 P2 TP
Off-resonance Resonance
Eigenfunctions are In both bonding and anti-bonding
close to the original on- eigenstates the probability is

site wave functions equally shared between the sites



R

Anderson metal
Many resonances and they overlap

Anderson insulator

Few isolated resonances

_ Typically each site is in the
resonance with some other one



Anderson - Lattice - tight binding model
I\/Iod e|  Onsite energies & - random

« Hopping matrix elements |ij

| and | are nearest
neighbors

otherwise

Anderson lransition

1 <1 1> 1
~ Insulator Metal
All eigenstates are localized There appear states extended

Localization length &, all over the whole system



L N N N N N N N N N N N N ® @ conditionfor
0@ D0 000 O (XX ) ® . .
©90000008 @ o@é o@ Localization:
s0sssiies 0esteses
. °
::::::.:: .: :6.:: | energy mismatch
oooooo@oo @o o0 0@e® e # of n.neighbors
I X IXEEKKK) ® ® ®
FYXXEXXEXXK! o090 9@ D0 00

Anderson insulator Anderson metal energy _ ‘g. — g.‘ —\W

Few isolated resonances There are many resonances mismatch ! Vltyp

and they overlap
_ Typically each site is in the # of nearest — 2
resonance with some other one neighbors —

A bit more precise:

Logarithm is due to the resonances, which are not nearest neighbors



Condition for Localization:

v (50) (5a)

Q Is it cor'r'ect?

Al . For low dimensions - NO.|_ = oo for d=172
* All states are localized. Reason - loop trajectories

Az * Works better for larger dimensions d > 2

A3 « Is exact on the Bethe lattice



Condition for Localization:

v = (1) ()

Q cIs it cor'r'ect?

Al . For low dimensions - NO.|_ = oo for d=172
* All states are localized. Reason - loop trajectories

AZ * Works better for larger dimensions d > 2

A3 « Is exact on the Bethe lattice

Rule At the localization At the localization transition the hoping
transition a typical matrix element is of the order of the
of the site is in resonance typical energy mismatch divided by the

thumb  With another one number of nearest neighbors



Anderson’s recipe:

Consider an open system (Anderson Model).
Particle escape == "broadening” of each eigenstate

E—S>E+IT; [[=ImX
[ - scape rate (inverse dwell time)

| =0 = I'=0

States localized inside the system - small T’
Extended states - large I



Anderson’s recipe:

1. take descrete spectrum E,, of H,
2. Add an infinitesimal Im partinto E

3. Evaluate Im):'u

-

insulator

‘JI \lll\l

n

[ImG;i{EHsi]

lim
S0+

i

o i
@: @ S
2 =
E = JLJ\'\JLM @  DN-oow
E C limits 2) 1 —0
4. take limit 7—>0 but only after N o0 2e metal
5. “What we really need to know is the EZ e~

probability distribution of ImZ2; not

its average...” o E



Probability Distribution of 7=Im X

L P(T) n is an infinitesimal width (Im
part of the self-energy due to
a coupling with a bath) of
one-electron eigenstates

x 1/n

iInsulator

X

o
.
T

= (I')
Look for:

_ > 0; metal
lim lim P(I' >0) =
U V—oo 0; nsulator



Anderson Transition

| < |

localized and extended
never coexist!

| > 1
&
2
Ec
) il
extendec 1
- E!
DoS
>

[2.. - mobility edges

c

A

C

all states are
localized

DoS




Temperature dependence of the conductivity

one-electron picture
[ Mobility
> edge
7//

(T -0)>0 G(T)OC e_cT

there are extended states all states are localized

4 4

| >1, I <l




Part 3.

Localization beyond
real space

Integrability and chaos



VOLUME 49 23 AUGUST 1982 NUMBER 8

Chaos, Quantum Recurrences, and Anderson Localization

Shmuel Fishman, D. R. Grempel, and R. E. Prange
Department of Physics and Center for Theovelical Physics, Univevsily of Maryland, College Park, Maryland 20742

(Received 6 April 1982)

A periodically kicked gquantum rotator is related to the Anderson problem of conduction
in a one-dimensional disordered lattice, Classically the second model is always chaotic,
while the first is chaotic for some values of the parameters, With use of the Anderson-
model result that all states are localized, it is concluded that the local quasienergy spec-
trum of the rotator problem is discrete and that its wave function is almost periodic in
time, This allows one to understand on physical grounds some numerical results recent-
ly obtained in the context of the rotator problem,

Localization in the angular momentum space




Quantum and Classical Dynamical Systems

Large numberd > 10f the degrees of freedom

Conventional Boltzmann- Integrable Systems
Gibbs Statistical Physics ’) g degrees of freedom

Equipartition Postulate intfegrals of motion

Ergodicity: time average = - Ergodicity is violated

space (ensemble) average Invariant tori dimension (
Chaos H=H,+AV Hamiltonian H, ({p;,0;})
Hamiltonian H ({p;. 0 }) Energy shell, dimension 2d —1

Classical Dynamics

Fermi, Pasta, Ulam system Arnold
(connected nonlinear oscillators) FEE T

Solar system

Quantum Dynamics ???



Koelmogoroev — Arnold — Moeser. (KAM) theory.

A.N. Kolmogorov, Integrable classical Hamiltonian
Dokl. Akad. Nauk SSSR, A i

1954, H, d>L

Proc. 1954 Int. Congress

of Mathematics, North-  Separation of variables: O sets of
Holland, 1957 . .
action-angle variables

|,,6, =27nwt;.., 1,,0, = 27w.t;..

Quasiperiodic motion: set of the
frequencies, @, ®,,..,@,, which are in
general incommensurate. Actions |.are
integrals of motion 0l;/0t=0

HE DL
2 A

Vladimir ) i
Arnold TOI’I




Koelmogorov — Arnold — Moeser (KAM) theory.

A.N. Kolmogorov, Dokl. Akad. Nauk SSSR, 1954.
Proc. 1954 Int. Congress of Mathematics, North-Holland, 1957

*\‘91 *\‘92 Given the set of the integrals
X R = of motion { Iﬂ} all trajectories
e =2 belong to a torus

N

Will an arbitrary weak perturbation \/ of an

Q = integrable Hamiltonian H, destroy the tori and f)

= Mmake the motion ergodic (when each point at the
energy shell will be reached sooner or later) .

" Most of the tori survive weak KAM
Ml and smooth enough perturbations JEERUEYEN




Classical Dynamics: H=H. +1V Quantum Dynamics:
from KAM to Chaos 0 Many - Body Localization

Classical, 0>>1 degrees of freedom|Quantum, d>>1 degrees of freedom

Integrals of motion are

|11 |21 S Id ‘| quantized - quantum .4
integrals of motion | "2 numbers 2
- Form a “lattice”.
. Energy" | Sites of the “lattice” - |
S £ th Shell gi?ens‘rate of the
~ dpace o € h=0 infegrable system
integrals of motion




Rectangular billiard

Two integrals of motion

Ilsz; I1:py

Energy 2 p; =2mE

shell:

h#0




Classical Dynamics: H=H. +1V Quantum Dynamics:
from KAM to Chaos 0 Many - Body Localization
Classical, 0>>1 degrees of freedom|Quantum, d>>1 degrees of freedom

Integrals of motion are
quantized - quantum e
numbers 2

Form a “lattice”.

Sites of the "“lattice” - |-
eigens‘ra're of the
infegrable system

P DYV,
integrals of motion

Space of the
integrals of motion

Perturbation - coupling
of the different sites |.
of the “lattice” - bonds|.

KAM

Most of the tori
survive weak and
smooth
perturbation




Classical Dynamics: H=H. +1V Quantum Dynamics:
from KAM to Chaos 0 Many - Body Localization

Classical, 0>>1 degrees of freedom|Quantum, d>>1 degrees of freedom

Integrals of motion R -
are quantized - .|2. . . . . . /Finite
quantum numbers .4 . . . . .| motion

Form a "“lattice”.

Sites of the "lattice”
-eigenstate of the
integrable system

P DYV,
integrals of motion

Space of the
integrals of motion

KAM

Most of the tori
survive weak and
smooth
perturbation

Perturbation - coupling
of the different sites
of the "“lattice” -
bonds

Wave functions
localized in the space
of quantum numbers




Classical Dynamics: H=H. +1V Quantum Dynamics:
from KAM to Chaos 0 Many - Body Localization

Classical, 0>>1 degrees of freedom|Quantum, d>>1 degrees of freedom

1, 1, ..
integrals of motion

Space of the
ntegrals of motion

Most of the tori
survive weak and
smooth
perturbation

Integrals of motion are
quantized - quantum S R Finite
numbers 2 [ motion

Form a “lattice”.

Sites of the "lattice” - |
eigens'ra're of the
infegrable system

Perturbation - coupling
of the different sites |.
of the “lattice” - bonds|.

Quantum random walk

Localization?

Many - Body Localization is an analog of
the Anderson Localization in a finite-

dimensional space of a quantum particle
subject to a random potential



KAM Most of the tori survive weak and
e 02 st i smooth enough perturbations

> |

1

‘y>0=‘r(”)> r(u):{| h » O
‘W>:Zcﬂ‘ﬂ>o ~ 0% The integrals of

motion are quantized

Energy shell

Py + P,
2m

==




A\

V B
1L @uiel® V
Matrix element of
the perturbation

C) _ ) w) Anderson Model !
| 1)1

AL hops are local - one can distinguish “near” and “far”
KAM perturbation is smooth enough



Pradhan e
& Sridar, PP Sinai
PRL, 2000 MRS billiard

y

Disordered
localized

billiard

Disordered

Localized extended Localized
momentum space extended real space



Classical Quantum
Integrable Integrable
Ho =H,(T); ol/et=0 ZE WW\ ) =|T)
Perturbation Per"rur'bahon
V: aifat#0 \7=;Vﬂ (V|
KAM Localized
Ergodic (chaotic) Extended ?




What is the reason to speak about localization if we in ?
general do not know the space in which the system is localized

Need an invariant (basis independent) criterion of the localization



