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>50 years of Anderson Localization

qp



…very few believed it 
[localization] at the time, 
and even fewer saw its 
importance; among those 
who failed to fully 
understand it at first was 
certainly its author…



Part 1. 

Introduction and 

History
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Can be density of particles or energy density.
It can also be the probability to find a 
particle at a given point at a given time

The diffusion equation is valid for any random walk 
provided that there is no memory (markovian process)

Einstein theory 
of Brownian 
motion, 1905
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Diffusion 
Equation 
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Density of 
states



Will a fluctuation (wave packet) spread ? 
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Einstein (1905): Random walk without memory
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Basic Quantum Mechanics:

Spectra

 -spectrum

Continuous
Unbound states

Extended states

Discrete
Bound states

Localized states
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Localization of single-particle wave-functions. 

Continuous limit:

extended

localized

Random potential
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What about charge transport ?

Problem: electrons interact with each other
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Density of states
Conductivity

Einstein Relation (1905)

Diffusion Constant
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Extended states 
- metal
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Localized states 
- insulator: Gµe-L/x; s = 0; D = 0

At zero temperature
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Part 2. 

Anderson Model;

Anderson Metal 

and 

Anderson Insulator



Anderson  

Model

• Lattice - tight binding model

• Onsite energies  ei - random

• Hopping matrix elements Iijj i

Iij

Iij ={-W < e
i
<W

uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized

Localization length 

Metal
There appear states extended

all over the whole system

Anderson  Transition

I   i and j are nearest 
neighbors

0 otherwise
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Q:
Why arbitrary 
weak hopping I is 
not sufficient for 
the existence of 
the diffusion

?
Einstein (1905): Marcovian (no memory) 

process g diffusion

j i

Iij

Quantum mechanics is not marcovian 
There is memory in quantum propagation!
Why? Quantum InterferenceA:



Quantum mechanics is not marcovian 
There is memory in quantum propagation!
Why? Quantum InterferenceA:

Memory!



Quantum mechanics is not marcovian 
There is memory in quantum propagation!
Why? Quantum InterferenceA:

O
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
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WEAK  LOCALIZATION

Constructive interference       probability of the return to the origin gets 
enhanced quantum corrections reduce the diffusion constant.

Tendency towards localization

Phase accumulated 
when traveling 
along the loop

The particle can go around 
the loop in two directions

Memory!
pdr  



Localization of single-particle wave-functions. 

Continuous limit:

extended

localized

d=1; All states are localized

d=2; All states are localized

d >2; Anderson transition

Random potential
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von Neumann & Wigner “noncrossing rule”

Level repulsion

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467



In general, a multiple spectrum in 
typical families of quadratic forms 
is observed only for two or more 
parameters, while in one-parameter 
families of general form the 
spectrum is simple for all values of 
the parameter. Under a change of 
parameter in the typical one-
parameter family the eigenvalues 
can approach closely, but when 
they are sufficiently close, it is as if 
they begin to repel one another. 
The eigenvalues again diverge, 
disappointing the person who 
hoped, by changing the parameter 
to achieve a multiple spectrum.

Arnold V.I., Mathematical Methods of Classical Mechanics 
(Springer-Verlag: New York), Appendix 10, 1989
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Level repulsion

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467

What about the eigenfunctions ?
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What about the eigenfunctions ?
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Off-resonance
Eigenfunctions are 

close to the original on-
site wave functions

Resonance
In both bonding and anti-bonding

eigenstates the probability is 
equally shared between the sites



Anderson insulator
Few isolated resonances

Anderson metal
Many resonances and they overlap

Transition: Typically each site is in the 
resonance with some other one



Anderson  

Model

• Lattice - tight binding model

• Onsite energies  ei - random

• Hopping matrix elements Iijj i

Iij

Iij ={-W < e
i
<W

uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized

Localization length 

Metal
There appear states extended

all over the whole system

Anderson  Transition

I   i and j are nearest 
neighbors

0 otherwise



Condition for 
Localization:

i j typ
We e  

energy mismatch

# of n.neighbors
I<

energy 
mismatch

2d# of nearest  
neighbors

A bit more precise: 

Logarithm is due to the resonances, which are not nearest neighbors



Condition for Localization:

Is it correct?Q:

A1:For low dimensions – NO.         for               
All states are localized. Reason – loop trajectories 

cI   1,2d 

A2:Works better for larger dimensions 2d 

A3:Is exact on the Bethe lattice



Condition for Localization:

Is it correct?Q:

A1:For low dimensions – NO.         for               
All states are localized. Reason – loop trajectories 

cI   1,2d 

A2:Works better for larger dimensions 2d 

A3:Is exact on the Bethe lattice

Rule 
of the 
thumb

At the localization 
transition a typical 
site is in resonance 
with another one

At the localization transition the hoping 
matrix element is of the order of the 
typical energy mismatch divided by the 
number of nearest neighbors



Anderson’s recipe:

Consider an open system (Anderson Model).
Particle escape      “broadening” of each eigenstate

; ImE E i     

States localized inside the system – small 
Extended states – large  





 - scape rate (inverse dwell time)

0 0I    
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N
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

limits

insulator

metal

1. take descrete spectrum E of H0

2. Add an infinitesimal Im part i to E

3. Evaluate Im 

Anderson’s recipe:

4. take limit but only after N
5. “What we really need to know is the    

probability distribution of  Im, not 
its average…” !

0



Probability Distribution of =Im 

metal

insulator

Look for:

V

 is an infinitesimal width (Im
part of the self-energy due to 
a coupling with a bath) of 
one-electron eigenstates



localized and extended 
never coexist!

DoS DoS

all states are

localized

I < IcI > Ic

Anderson  Transition

- mobility edges

extended



Chemical
potential

Temperature dependence of the conductivity 

one-electron picture

DoS DoSDoS
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Part 3. 

Localization beyond 
real space

Integrability and chaos



Localization in the angular momentum space



Quantum and Classical Dynamical Systems

Conventional Boltzmann-
Gibbs Statistical Physics
Equipartition Postulate

Ergodicity: time average = 
space (ensemble) average

Chaos

Hamiltonian

Integrable Systems
degrees of freedom
integrals of motion 

Ergodicity is violated

Invariant tori dimension 

Hamiltonian

Energy shell, dimension 

?
  ,i iH p q

Large number of the degrees of freedom

  0 ,i iH p q0H H V 

d
d

d

2 1d 

0
KAM region
Arnold diffusion

Non-ergodic

Ergodicity 
Equipartition Fermi, Pasta, Ulam system 

(connected nonlinear oscillators)

Solar system

. . .

Classical Dynamics

Quantum Dynamics ???

1d



Andrey 

Kolmogorov 

Vladimir 

Arnold
Jurgen

Moser

Kolmogorov – Arnold – Moser (KAM) theory

Integrable classical Hamiltonian

d >1:

Separation of variables: d sets of 
action-angle variables

Quasiperiodic motion: set of the 
frequencies,             , which are in 
general incommensurate. Actions   are 

integrals of motion

1 2, ,.., d  
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2I
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A.N. Kolmogorov, 
Dokl. Akad. Nauk SSSR, 
1954. 
Proc. 1954 Int. Congress 
of Mathematics, North-
Holland, 1957

0Ĥ

tori



Kolmogorov – Arnold – Moser (KAM) theory

1

1I
2

2I
 …=>

Q:
Will an arbitrary weak perturbation of an 
integrable Hamiltonian destroy the tori and 
make the motion ergodic (when each point at the 
energy shell will be reached sooner or later) ?

A: Most of the tori survive weak 
and smooth enough perturbations

V̂
0Ĥ

KAM 
theorem

A.N. Kolmogorov, Dokl. Akad. Nauk SSSR, 1954. 
Proc. 1954 Int. Congress of Mathematics, North-Holland, 1957

Given the set of the integrals 
of motion      all trajectories 
belong to a torus 

 I



Classical, d>>1 degrees of freedom

I1, I2, . . ., Id 
integrals of motion

Quantum, d>>1 degrees of freedom
Integrals of motion are 
quantized – quantum 
numbers

Form a “lattice”. 

Sites of the “lattice” –
eigenstate of the 
integrable system

I2

I1

0

I2

I1

0

Classical Dynamics: 
from KAM to Chaos

Quantum Dynamics: 
Many – Body Localization

Space of the 
integrals of motion

0H H V 

Energy 
Shell
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Two integrals of motion
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Rectangular billiard
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Classical, d>>1 degrees of freedom

I1, I2, . . ., Id 
integrals of motion

Quantum, d>>1 degrees of freedom
Integrals of motion are 
quantized – quantum 
numbers

Form a “lattice”. 

Sites of the “lattice” –
eigenstate of the 
integrable system

Perturbation – coupling 
of the different sites 
of the “lattice” - bonds

I2

I1

0

I2

I1

KAM

Most of the tori 
survive weak and 

smooth 
perturbation

Energy 
Shell

0

Classical Dynamics: 
from KAM to Chaos

Quantum Dynamics: 
Many – Body Localization

Space of the 
integrals of motion

0H H V 



Classical, d>>1 degrees of freedom

I1, I2, . . ., Id 
integrals of motion

Quantum, d>>1 degrees of freedom

Integrals of motion 
are quantized –
quantum numbers

Form a “lattice”. 

Sites of the “lattice” 
–eigenstate of the 
integrable system

Perturbation – coupling 
of the different sites 
of the “lattice” -
bonds

Wave functions 
localized in the space 
of quantum numbers

I2

I1

Finite 
motion

0

I2

I1

KAM

Most of the tori 
survive weak and 

smooth 
perturbation

Energy 
Shell

0

Classical Dynamics: 
from KAM to Chaos

Quantum Dynamics: 
Many – Body Localization

Space of the 
integrals of motion

0H H V 



Classical, d>>1 degrees of freedom

I1, I2, . . ., Id 
integrals of motion

Quantum, d>>1 degrees of freedom
Integrals of motion are 
quantized – quantum 
numbers

Form a “lattice”. 

Sites of the “lattice” –
eigenstate of the 
integrable system

Perturbation – coupling 
of the different sites 
of the “lattice” - bonds

Quantum random walk

Localization? 

I2

I1

Finite 
motion

0

I2

I1

KAM

Most of the tori 
survive weak and 

smooth 
perturbation

Energy 
Shell

0

Classical Dynamics: 
from KAM to Chaos

Quantum Dynamics: 
Many – Body Localization

Space of the 
integrals of motion

0H H V 

Many – Body Localization is an analog of
the Anderson Localization in a finite-
dimensional space of a quantum particle
subject to a random potential
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Most of the tori survive weak and 
smooth enough perturbations

KAM 
theorem:
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Energy shell
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The integrals of 
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dIII ,...,1


Matrix element of 
the perturbation
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0

I
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AL hops are local – one can distinguish “near” and “far”

KAM perturbation is smooth enough 

Anderson Model !



Square

billiard

Localized 
momentum space extended

Pradhan  

& Sridar, 

PRL, 2000

Localized 
real space

Disordered 

extended

Disordered 

localized

Sinai

billiard



Glossary

Classical Quantum

Integrable Integrable

Perturbation Perturbation

KAM Localized

Ergodic (chaotic) Extended ?
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Question:

What is the reason to speak about localization if we in 
general do not know the space in which the system is localized ?

Need an invariant (basis independent) criterion of the localization


