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Two transitions

coupling 
constant

1D bosons in the random potential 

Michal, Aleiner, Shlyapnikov 
and BA, 2015



Disordered interacting bosons in two dimensions



Arnold diffusion

1I

2I

Each point in the space of the 
integrals of motion corresponds 
to a torus  and vice versa

0ˆ V

1I
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Finite motion?

2d  All classical trajectories 
correspond to a finite motion 



When a theorist is asked to evaluate the stability 
of a table with 4 legs he/she

1. Evaluates the stability of a table with 1 leg, 
then

2. Evaluates the stability, of a table with infinite 
number of legs and after that

3. Spends the rest of the life in attempts to 
evaluate the stability of the table with an 
arbitrary number of legs.

When a mathematician is asked to evaluate the 
stability of a table with 4 legs he/she

1. Evaluates the stability of a table with 1 leg, 
then

2. Evaluates the stability, of a table with infinite 
number of legs and after that

3. Spends the rest of the life in attempts to 
evaluate the stability of the table with an 
arbitrary number of legs.?



Arnold diffusion

1I

2I

Each point in the space of the 
integrals of motion corresponds 
to a torus  and vice versa

0ˆ V

1I

2I

Finite motion?

2d  All classical trajectories 
correspond to a finite motion 

2d 
Most of the trajectories 
correspond to a finite motion 

However small fraction of the 
trajectories goes infinitely far



Arnold diffusion

space # of dimensions

real space d

phase space 2d

energy shell 2d-1

tori d

1. Most of the tori survive – KAM

2. Classical trajectories do not cross each 
other

.2 1en shell torid d d   

Each torus 
has “inside” 
and “outside” inside

.2 1en shell torid d d   

A torus does not have 
“inside” and “outside” as 
a ring in >2 dimensions



insulator metal
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Ergodicity 

Equipartition

Conventional Boltzmann-
Gibbs Statistical 
Physics
Equipartition Postulate

Ergodicity: time average = 
space (ensemble) average

Chaos

Hamiltonian

Integrable Systems
degrees of freedom
integrals of motion 

Ergodicity is violated

Invariant tori dimension 

Hamiltonian

Energy shell, dimension 
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Non-ergodic

Fermi, Pasta, Ulam 
system (connected 

nonlinear oscillators)

Solar system

. . .

Classical Dynamics

Quantum Dynamics ???
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Anderson Localization:
One quantum particle 
in a random potential

 Strong enough disorder – the eigenstates are localized
 Weak disorder – maybe the eigenstates are extended
 Localization – Delocalization – in real space

 Not only quantum dynamics – any wave dynamics

Many-Body Localization:
Isolated quantum system, 
many degrees of freedom 

 Close to the integrability – the eigenstates are localized
 Far from the integrability –the eigenstates are extended
 Localized – Extended: – space of quantum numbers

 Genuine quantum phenomenon 

 



Classical Dynamical Systems:

Are the dynamics ergodic outside the KAM regime?

For some low-dimensional systems one can prove the 
ergodicity: Sinai billiard, Bunimovich billiard, etc.

At least some systems with high number of 
dimensions are known to be non-ergodic:
 Solar System
 Fermi-Pasta-Ulam system of connected non-linear 

oscillators
 .. . 



“The results of the calculations (performed on the old 
MANIAC machine) were interesting and quite 
surprising to Fermi. He expressed to me the opinion 
that they really constituted a little discovery in 
providing limitations that the prevalent beliefs in the 
universality of “mixing and thermalization in non-linear 
systems may not always be justified.”
[S.Ulam]



Age: ~4.5 Billion years
Sun dies in ~8 Billion years
Mass 1.0014 Solar masses

Newton: 
Motion of a single planet around the Sun.
However, there are 8 planets  (Newton 
knew 6). Each one exerts forces on the 
others – small and periodically varying,.

Newton: “…the Planets move one and the same way in Orbs
concentric, some inconsiderable Irregularities excepted, which 
may have arisen from the mutual Actions of Comets and Planets
upon one another, and which will be apt to increase, till this 
System wants a Reformation.”,

God has to intervene continuously to stabilize the world?!

Leibniz sneered at Newton’s conception, as being that God so 
incompetent as to be reduced to miracles in order to rescue his 
machinery from collapse.



Age: ~4.5 Billion years
Sun dies in ~8 Billion years
Mass 1.0014 Solar masses

Isaac Newton: 
Motion of a single planet around the Sun.
However, there are 8 planets  (Newton 
knew 6). Each one exerts small and 
periodically varying forces on the others

 The positions of the planets in >108 years are unpredictable: they 
are too sensitive to initial condition - chaos. 

 In 8 billion years (just before the Sun dies) the orbits will most 
likely be similar to their present ones. 

 The unpredictability is mostly in the orbital phases, collisions 
between planets are unlikely in spite of the chaos. 

 Ensemble of solar systems with slightly different parameters at the 
present time (random shifts ~1mm): ~1% percent probability that 
Mercury collides with Venus before the death of the Sun. 

The solar system is neither absolutely stable nor ergodic



Glassy States of Matter:

Glass in Egyptian tombs – no tendency for 
ordering/thermalization in ~3000 years   



Ideal (no disorder) 1D Josephson array
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Ideal (no disorder) 1D Josephson array
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Ideal (no disorder) 1D Josephson array
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High temperatures –
elementary excitations –
plasmons. 0iq 

charge

current
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It makes more sense to build the description in terms of 
the charges rather than in terms of the phases. 



Matrix element of the 

transition is

Localized phase at 
high temperatures!

Quantum Transition:
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equations 
of motion: 

Dimensionless 
energy per island. 

Classical limit:
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Slow relaxation in the classical limit
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Effective temperature
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Effective temperature grows 
as u increases, but is 
different from both 
thermodynamic and pseudo-
thermodynamic temperature.  
For example at u=3.5:
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Entropy around critical point
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T  
Entanglement entropy 
coincides with the 
conventional entropy 

Quantum Simulations Finite number (5) of the 
charged states per site 

0, 1, 2q   



Quantum Simulations Finite number (5) of the 
charged states per site 

0, 1, 2q   


