Strong coupling ansatz for the 1D
Fermi gas 1in a harmonic potential
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Two fundamental quantum systems
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e Particles in one dimension is a fundamental problem of strongly
correlated systems

® [nteractions are enhanced due to the particles’ restricted motion
® Special role played by particle statistics

¢ Many such systems amenable to exact solutions, such as Bethe ansatz

® The harmonic oscillator is a fundamental model of quantum physics
® [n the absence of interactions, we know the exact ground state

® No Bethe-ansatz solution for 1D fermions in a harmonic potential



Model
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e Two species (spins) of fermions with short-range interactions
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e (Consider a single tube in an optical lattice
. At low collision energies, the 3D
interactions become effectively 1D:
b
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Olshanii PRI 1998



Ultracold fermions in Heidelberg
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The 1D harmonic oscillator was realized in a recent series of experiments
with two-component fermions in the group of S. Jochim

® Fermionization of two distinguishable fermions Zirn et al, PRL 2012

Wavefunctions in the
Tonks-Girardeau limit:

R ZB01€—($(Q)—|—$%)/2

Exact solution: Busch et al, zo1 ‘6—(a;§+a:§)/2

Foundations of Physics 1998



Super-Tonks
regime

Fermionization

energy E, of the first excited state
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The single impurity problem
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Inspired by the experiment, we focus on the

® single impurity problem

®* ® O O o ¢
® inalD geometry

® in an external harmonic potential

® 1n the vicinity of the Tonks-Girardeau limit of infinite repulsion

We show that this problem can be solved essentially exactly for any number
of majority particles
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For N spin-up fermions and 1 spin-down fermion there are N+1
degenerate wavefunctions in the TG limit

® # of ways to order the impenetrable particles Pt

® # of degenerate wavefunctions which are everywhere proportional to the

fermionized wavefunction:
wO (X) == NN H 372] 2 Z]kV:O :L'i/Z

0<i<j<N

® Such wavefunctions all have the same kinetic energy and vanishing
interaction enerqy



Basis functions for an impurity in the TG limit -~ . . | -
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See also Deuretzbacher et al, PRL 2008



Few-body problem
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For a single impurity problem and N majority fermions

N2
N b L.. Guan et al PRL 2009
Po = Na 212201202 6_($0+x1+$2)/27
¢1 = Na x12 (|zo1|xo2 + xo1|To2|) 6_($3+$%+m§)/27
2 = Na x12|T01202| 6_(xg+$?+x§)/2.
Yo = do, Y1 = \[ 1, V2= \[ (¢ — 3¢2) all fixed by spin and parity

® Guan et al provided a solution for any N, but already for N=3 this
did not match the result of recent numerics: Gharashi, Blume PRI, 2013

- i
o = do, 1 = \/7¢1, o = ¢0—¢2) ¢3=\/%(¢1—5¢3)
1

not all fixed by spin and parity



~

Strong-coupling ansatz
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Inspired by the 3- and 4-body solutions we propose an ansatz:

For any N, the ['th wavefunction is a

superposition of the basis functions with
at most [ absolute values

e Idea: cusps in the wavefunction reduce kinetic energy at finite repulsion —
let us introduce these gradually
e Advantage: the problem is reduced to Gram-Schmidt orthogonalization

Yo = o, Y1= \/%(1-00188% —0.00941¢3), Y2 = %(Cbo —¢2), 3= \/%(099246@51 — 4.99996¢3)

|
| .
3-body: Guan et al PRL 2009 | [ (| ¥1)| exceeds 0.999993
4-body: Gharashi, Blume PRI 2013 l
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Perturbation theory in the TG limit

VNI O A B L Tt G BT P S DAY 84 ety = I ST AT IR Vs e N o st B b AR BAVNCTR  rr  or iin  DOS P i s e BORS?

e We can also perform exact calculations in the TG limit, using the
Hellmann-Feynman theorem

Hln = <¢Z|Hl|¢n = QZ/dX5 L350 ¢l¢n

X L og [T
== ;/dx 5(3310) 5’:ci0

Oy | T

a3 axz‘o -

)

This multidimensional integral cannot be calculated combinatorially
® We are limited to N<10

See also Volosniev et al, Nat Comm 2014



Compar 1son between exact solution and ansatz - |\, oo
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e Wavefunction overlap of exact and ansatz solutions exceed 0.9997 for
all states up to N=8
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e Ground state wavefunction appears to extrapolate to an overlap ~
0.9999
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Harmonic Heisenberg model
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e In the TG limit, we can write the Hamiltonian as a Heisenberg model:
e i e o b i Matveev PRL 2004
H = Lo — ? AR ? Z Jedis S Volosniev et al, Nat Comm 2014
=0

Deuretzbacher et al, PRA 2014

o 6 6 O 0 o

e Within our ansatz, using the approximate spectrum, we can calculate
the nearest neighbour exchange constants

—<’i—N_1 2+i(N+1)2
(N +1)/2

=

115 a particle index, not a site index



Wavetunctions in the ground state manifold
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e We can solve the harmonic Heisenberg model exactly for the single
impurity. The result is the family of discrete Chebyshev polynomials,

known from approximation theory

s 1]

1=0.n—0

The ground state wavefunction is a sign-
alternating Pascal’s triangle
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Approaching the many-body limit
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Breathing modes
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® Shift of energies in higher manifolds can be calculated using a dynamical
SO(2,1) symmetry

® [n the absence of a harmonic potential, the system is scale invariant in the TG
limit

® The introduction of the harmonic potential leads to an algebra with SO(2,1)

commutation relations Pitaevskii and Rosch, PRA 1997
) 1+ : OE
e 4E, 8 9D: Moroz PRA 2012

In the TG limit, the breathing modes form a tower of
modes separated by twice the harmonic oscillator
frequency. Away from TG limit this is 0E; — 6Ey = 36Ey/4E



Conclusions and outlook
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® We proposed a strong coupling ansatz for a single impurity immersed in a 1D
Fermi gas in a harmonic potential

e Wavefunction overlaps with exact states exceed 0.9997 for all up to N=8
e We obtained an approximate /(/+1) spectrum
® No small parameter — “weakly broken” symmetry?
e We obtained the model within which our approximation is exact
® [Harmonic Heisenberg model - valid for any number of particles

e For the 2+2 problem, wavefunction overlap is > 0.99998 when comparing
with numerics

e The ground state manifold is formed from the discrete Chebyshev polynomials

¢ Mappings from fermions to bosons? SU(N) magnetism? Higher dimensions?
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