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Outline
• Introduction to Dipolar Bose-Einstein Condensates (BECs) 

• Stability and motivating experiments 

• LHY fluctuations stabilising a dipolar BEC - Trapped system  

• Self-bound droplets in free-space. 

• Collective excitations of self-bound droplets
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A brief history of dipolar BECs
Early theory proposals:
K. Goral, K. Rzazewski, T. Pfau, PRA 2000 
L. Santos, G. Shlyapnikov, P Zoller, M. Lewenstien, PRL 2000 
S.Yi, L. You PRA 2001 

Chromium Experiment:
A. Griesmaer, J. Werner, S. Hensler, J Stuhler, T Pfau, PRL 2005
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Ṽ (k) = gs + gdd
�
3 cos2 ⇤k � 1

⇥
(7)
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Dipolar interaction strengths

2

Table 1. Dipolar constants for various atomic and molecular
species. For the molecular species, the (yet unknown) scattering
length is assumed to be 100 a0 (as the C6 coe⇥cient of the dimer is
comparable to the one of a single atom, the order of magnitude of
the scattering length is similar, but obviously the actual value highly
depends on the details of the potential).

Species Dipole moment add �dd

87Rb 1.0µB 0.7 a0 0.007
52Cr 6.0µB 16 a0 0.16
168Er 7.0µB 67 a0 0.38
164Dy 10µB 130 a0 1.3
KRb 0.6 D 2.0⇥ 103a0
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  “dipole dominated”
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Depletion and fluctuations of a trapped dipolar Bose-Einstein condensate in the roton regime

P. B. Blakie,⇤ D. Baillie, and R. N. Bisset
Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand.

We consider the non-condensate density and density fluctuations of a trapped dipolar Bose-Einstein conden-
sate, focusing on the regime where a roton-like excitation spectrum develops. Our results show that a character-
istic peak in the non-condensate density occurs at trap center due to the rotons. In this regime we also find that
the anomalous density becomes positive and peaked, giving rise to enhanced density fluctuations. We calculate
the non-condensate density in momentum space and show that a small momentum halo is associated with the
roton excitations.

PACS numbers: 67.85-d, 67.85.Bc
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(ñ+ m̃).



“strongly” dipolar condensate

In dipole dominated regime new physics predicted to 
emerge: rotons, quasi-2D solitions, structured ground 
states …. 

However, condensate is meta-stable to mechanical 
collapse
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We consider the non-condensate density and density fluctuations of a trapped dipolar Bose-Einstein conden-
sate, focusing on the regime where a roton-like excitation spectrum develops. Our results show that a character-
istic peak in the non-condensate density occurs at trap center due to the rotons. In this regime we also find that
the anomalous density becomes positive and peaked, giving rise to enhanced density fluctuations. We calculate
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roton excitations.
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+ ñ.

Fluctuation density characterizes fluctuation strength

n

F

(x) ⌘
q

G

(2)

(x)� n(x)

2 ⇡
p

2n

c
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Depletion and fluctuations of a trapped dipolar Bose-Einstein condensate in the roton regime

P. B. Blakie,⇤ D. Baillie, and R. N. Bisset
Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand.

We consider the non-condensate density and density fluctuations of a trapped dipolar Bose-Einstein conden-
sate, focusing on the regime where a roton-like excitation spectrum develops. Our results show that a character-
istic peak in the non-condensate density occurs at trap center due to the rotons. In this regime we also find that
the anomalous density becomes positive and peaked, giving rise to enhanced density fluctuations. We calculate
the non-condensate density in momentum space and show that a small momentum halo is associated with the
roton excitations.
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j

(k)|2 + |v̄
j

(k)|2]R
dk [|ū
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Figure 11. The energy landscape E(σρ, σz) as a function of the variational parameters σρ and σz of the Gaussian ansatz, for a trap of aspect
ratio λ = 10, and various values of the scattering length a. When a decreases, one goes from a global minimum (at a = 18a0) to a local
minimum corresponding to a metastable condensate (at a = 10a0). This local minimum vanishes at a = acrit (here −8.5a0). Below acrit , the
energy can be lowered without bound by forming an infinitely thin cigar-shaped cloud.

Figure 12. Experimental observation of the geometry-dependent
stability of a dipolar BEC. (a) BEC atom number N as a function of
a for a spherical trap; N vanishes for a smaller than acrit ≃ 15a0.
(b) For an oblate trap (λ = 10), one has acrit ≃ −2a0; such a trap
can thus stabilize a purely dipolar BEC. In (a) and (b) the solid lines
are fits to the empirical threshold law (a − acrit)

β . (c) Sample
images of the atomic cloud as a function of a for λ = 10.

line is the stability threshold acrit(λ) obtained by the Gaussian
ansatz for a number of atoms N = 2 × 104, which shows
good agreement with the measurements. Note that for the
parameters used in the experiment, the critical scattering length
for pure contact interaction, given by (5.3) would be −0.3a0

for λ = 1, which clearly shows that the instability is driven
here by the dipole–dipole interaction.

To calculate the exact stability threshold, one needs to
resort to a numerical solution of the GPE (4.3); the result of
such a calculation [103] is displayed as a thin line in figure 13
and shows very good agreement with the data. The numerical
solution reveals, for some values of the parameters (λ, a)

close to the instability region, the appearance of ‘biconcave’

Figure 13. Stability diagram of a dipolar condensate in the plane
(λ, a). The dots with error bars correspond to the experimental
data [102]; the thick solid line to the threshold acrit(λ) obtained
using the Gaussian ansatz (5.4) with N = 20 000; the thin solid line
to the numerical solution of the GPE (4.3) [103].

condensates, where the density has a local minimum at the
center of the trap [104]12.

5.4. Trapped gas: Thomas–Fermi regime

As we shall see in the following sections, a very important
approximation in the case of dipolar gases is the so-called
Thomas–Fermi (TF) limit, in which quantum pressure effects
are neglected. Amazingly, the TF solutions for the ground
state of the trapped BEC have the same inverted parabola shape
as in the case of contact interactions. This has been pointed
out for the first time in [63], where, however, the trapping
was restricted to the z-direction, while in the other directions

12 The experimental observation of such biconcave condensate (which shows
in a striking manner the long-range character of the dipole–dipole interaction)
is difficult for several reasons: (i) the density dip does not survive in time of
flight (which implies that in situ imaging would be needed to detect it), (ii) it
has a small contrast of only a few per cent and (iii) the regions in the plane
(λ, a) where the biconcave condensate exists have a very small area. However,
the use of potentials flatter than harmonic traps, such as a quartic or a box-like
potential, should relax considerably the constraints (ii) and (iii) (Ronen, 2008,
private communication).
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Figure 3 Stability diagram of a dipolar BEC in the a–l plane. a, Experimental (green squares) and theoretical (green line) values of the critical scattering length acrit as a
function of the trap aspect ratio. The theory curve is obtained for 20,000 atoms and an average trap frequency ⇤̄ = 2�⇥700Hz (the average values we find for our six
traps). The red curve (magnified in the inset) marks the stability threshold for a BEC with pure contact interactions using the same parameters. The asymptotic stability
boundary (Nadd/aho⌅ 1) which for l⇧ 0 (l⇧ ) converges to add (�2add) is plotted in grey. The error bars in l and acrit result from the uncertainty (estimated one
standard deviation) in the trap frequency measurement and the calibration a(B ) of the scattering length. b–e, Behaviour of the energy landscape E(⇥ r ,⇥z ). Lines of equal
energy are plotted for fixed l = 10 and four different values of the scattering length a (blue dots in a). For acrit < a < add (c) the collapsed prolate ground state emerges
(⇥ r⇧ 0 at finite ⇥z ) and the BEC becomes metastable.

where N0, acrit and � are fitting parameters, we find the critical
scattering length acrit. The simple functional form (2) was
empirically chosen as it accounts for the fast decreasing BEC atom
number at a ⌃ acrit and for the slow decrease for a⌅ acrit. The
exponent � describing the steepness of the collapse was found to
be �⌃ 0.2 for all traps. The values of acrit that are plotted in Fig. 3a
mark the experimentally obtained stability threshold of a 52Cr BEC
in the plane (l, a). We observe a clear shift towards smaller a
as l increases. For the most oblate trap (l = 10), we can reduce
the scattering length to zero and hence access the purely dipolar
regime experimentally.

To get a more quantitative insight into the collapse threshold
acrit(l), we numerically determine the critical scattering length
(green curve in Fig. 3a). For this, we use a variational method to
minimize the Gross–Pitaevskii energy functional1

E[�] =
⇤ �

h̄2

2m
|⇣�|2 +Vtrap|�|2 + 2⇧h̄2a

m
|�|4

+ 1

2
|�|2

⇤
Udd(r�r�)|�(r�)|2dr�

⇥
dr, (3)

where

Udd(r) = µ0µ
2

4⇧

1�3cos2 ⇥

|r|3

is the interaction energy of two aligned magnetic dipoles µ, with r
being the relative position of the dipoles and ⇥ the angle between r
and the direction z of polarization.

Similar to the work presented in refs 4–6 and 25, we use
a cylindrically symmetric gaussian ansatz to evaluate the energy
functional (3) with the radial and axial widths ⌃r and ⌃z as
variational parameters (see the Methods section). To obtain
acrit, we lower the scattering length until the energy landscape
E(⌃r ,⌃z) does not contain any minimum for finite ⌃r and ⌃z

any more (Fig. 3b–e). Starting with large values a > add, we find
that E(⌃r ,⌃z) supports a global minimum for finite ⌃r and ⌃z

independently of l and thus the BEC is stable (Fig. 3b). Going
below a⇤ add, the absolute ground state is a collapsed infinitely thin
cigar-shaped BEC (⌃r⇧ 0) and the possible existence of a further
local minimum (corresponding to a metastable state) is determined
by the trap aspect ratio l (see Fig. 3c, where add > a > acrit and
Fig. 3d, where a = acrit). Finally, below a⇤�2add (Fig. 3e), the local
minimum vanishes for any l and the BEC is always unstable6,7.

In spite of the simplicity of our model, we find good agreement
between experiment and theory (Fig. 3a). We checked that the
diVerent atom numbers and mean trap frequencies that we find
for the six traps modify the green curve by much less than the
error bars.

The behaviour of the critical scattering length acrit as a function
of the aspect ratio l can be understood considering the limit
N add/aho⌅ 1, which is satisfied by our average experimental value
of N add/aho ⌃ 23. Owing to their linear N-scaling, the kinetic
energy and the potential energy (equations (5) and (6) in the
Methods section) can be neglected and the total energy E(⌃r ,⌃z)
is dominated by the interaction term

[Econtact +EDDI]⌥N 2

�
a

add

� f (⇤)

⇥
.

The function f (ref. 25) of the cloud aspect ratio ⇤ = ⌃r/⌃z arises
from the DDI and is discussed in the Methods section.

In this regime, where the stability is solely governed by the
competition between the contact and DDI, the critical scattering
length (grey curve in Fig. 3a) is implicitly given by

acrit(l) = addf (⇤(l)) . (4)

The asymptotic behaviour of the theory curve now becomes
apparent: an extremely prolate (oblate) trap forces the cloud shape
to also be extremely prolate (oblate) and f takes its extremal

220 nature physics VOL 4 MARCH 2008 www.nature.com/naturephysics

pure contact gas

GPE soln (Wilson et al.)

Gaussian variational S. Ronen, et al., PRL 98, 030406 (2007)
Key theory:

[9]. The reduction of a close to B0 !! is accompanied by
inelastic losses. By measuring the 1=e lifetime and the
density of the BEC close to resonance, we estimate the
three-body loss coefficient to be constant for the range of
scattering lengths (5 < a=a0 < 30) studied here, with a
value L3 " 2# 10$40 m6=s.

To study the collapse dynamics, we first create a BEC
of typically 20 000 atoms in a trap with frequencies
%!x;!y;!z&’ %660;400;530&Hz at a magnetic field "10 G
above the Feshbach resonance, where the scattering length
is a ’ 0:9abg. We then decrease a by ramping down B line-
arly over 8 ms to a value ai ' 30a0 which still lies well
above the critical value for collapse, measured to be at
acrit ’ %15( 3&a0 [shaded area on Fig. 1(a)] for our pa-
rameters [9]. This ramp is slow enough to be adiabatic
( _a=a ) !x;y;z), so that the BEC is not excited during it.
After 1 ms waiting time, a is finally ramped down rapidly
to af ' 5a0, which is below the collapse threshold. For
this, we ramp linearly in 1 ms the current I%t& in the coils
providing the magnetic field B'"I. However, due to eddy
currents in the metallic vacuum chamber, the actual value
of B%t& and hence that of a%t& change in time as depicted in
blue on Fig. 1(a). To obtain this curve, we used Zeeman
spectroscopy to measure the step response of B%t& to a jump
in the current I%t& (corresponding to a "15 G change in B),
and found that the resulting B%t& is well described if # _B!
B ' "I%t& holds, with # ’ 0:5 ms. From this equation and
the measured I%t& we determine the actual a%t&.

After the ramp, we let the system evolve for an adjust-
able time thold and then the trap is switched off. Note that
the origin of thold corresponds to the end of the ramp in I%t&.
Because of eddy currents, thold ' 0 about 0.2 ms before the

time at which the scattering length crosses acrit. However,
as we shall see below, even for thold < 0:2 ms a collapse
(happening not in trap, but during the time of flight) is
observed, since during expansion the scattering length
continues to evolve towards af . The large magnetic field
along z is rapidly turned off (in less than 300 $s) after 4 ms
of expansion, and the condensate expands for another 4 ms
in an 11 G field pointing in the x direction, before being
imaged by absorption of a resonant laser beam propagating
along x. Changing the direction of the field allows us to use
the maximum absorption cross section for the imaging (if
the latter was done in high field, the absorption cross sec-
tion would be smaller, thus reducing the signal to noise
ratio of the images). We checked that this fast switching
has no influence on the condensate dynamics. We observe
that the atomic cloud has a clear bimodal structure, with a
broad isotropic thermal cloud, well fitted by a Gaussian,
and a much narrower, highly anisotropic central feature,
interpreted as the remnant BEC [see Figs. 1(b) and 1(c)].

The upper row of Fig. 1(d) shows the time evolution of
the condensate when varying thold. The images were ob-
tained by averaging typically five absorption images taken
under the same conditions; the thermal background was
subtracted, and the color scale was adjusted separately for
each thold for a better contrast. From an initial shape
elongated along the magnetization direction z, the conden-
sate rapidly develops a complicated structure with an ex-
panding, torus-shaped part close to the z ' 0 plane.
Interestingly, the angular symmetry of the condensate at
some specific times (e.g., at thold ' 0:5 ms) is reminiscent
of the d-wave angular symmetry 1$ 3cos2% of the DDI.
For larger values of thold, we observe that the condensate
‘‘refocuses’’ due to the presence of the trap [17].

FIG. 1 (color). Collapse dynamics of
the dipolar condensate. (a) Timing of
the experiment. The red curve represents
the time variation of the scattering length
a%t& one would have in the absence of
eddy currents, while the blue curve is
obtained by taking them into account
(see text). (b) Sample absorption image
of the collapsed condensate for thold '
0:4 ms, after 8 ms of time of flight,
showing a ‘‘cloverleaf’’ pattern on top
of a broad thermal cloud. This image was
obtained by averaging 60 pictures taken
under the same conditions. (c) Same
image as (b) with the thermal cloud
subtracted. In (b) and (c) the field of
view is 270 $m by 270 $m. The green
arrow indicates the direction of the mag-
netic field. (d) Series of images of the
condensate for different values of thold
(upper row) and results of the numerical
simulation without adjustable parameters
(lower row); the field of view is 130 $m
by 130 $m.
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Figure 2.19: Collapse dynamics of the dipolar condensate for vari-
able hold times thold (see text). Top: experimental images aver-
aged over around five experimental runs per pane, with the thermal
cloud subtracted. Bottom: Numerical calculations using the DGPE
(Eq. (2.10)). (Fig. taken from Ref. [104]).

rapidly remove a large portion of the central atoms. The corresponding sudden loss
of the DDI induced centrifugal force causes the remaining central atoms to be ejected
radially in a ring formation due to the quantum pressure. This ring (or belt) around
the centre of what remains of the rod is responsible for the d-wave resemblance.

Quasi-2D Uniform System

In Sec. 2.3.1 we discussed Bogoliubov theory in the context of the quasi-2D system,
assuming a ground harmonic oscillator state for the z-direction profile. Here we revisit
the quasi-2D system, but this time with the question of stability in mind.

Recall the quasi-2D Bogoliubov dispersion relation (Eq. (2.30))
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which we use to construct Fig. 2.20 (from our paper [19]). We show the generic features
of the quasi-2D system as the dipolar and contact interaction parameters are varied.
Notably, the system can become unstable through a phonon or roton instability where
k

⇢

! 0 (case B) or k
⇢

⇠ 1/a
z

(case D) modes, respectively, soften and develop imag-
inary eigenvalues. Within the stable region we have indicated a sub-region where the
dispersion relation has a roton feature i.e. a local minimum at finite k

⇢

(case C).
The phonon instability boundary is simply obtained from Eq. (2.30) by recalling
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In Fig. 1b, we show typical in situ images of the resultant triangular 
patterns for the quantum ferrofluid with different numbers of droplets, 
Nd, ranging from two to ten. To analyse the average number of atoms 

per droplet, we count the number of droplets Nd in relation to the total 
number of atoms. Figure 1c indicates a linear dependence between Nd 
and the number of atoms, with a slope of 1,750(300) atoms per droplet. 
For Nd = 2, we observe a droplet distance of d = 3.0(4) µm. The droplets, 
which have a large effective dipole moment of Ndµ, strongly repel each 
other while the radial trapping applies a restoring force. Hence, the dis-
tance d can be calculated using a simplified one-dimensional classical 
system by minimizing the energy of the system.

We assume two strongly dipolar particles with 1,750 times the mass 
and magnetic moment of a Dy atom that are confined in a harmonic 
trap. For our experimental parameters, these particles minimize their 
energy with a distance of d = 3.3 µm, in agreement with the observed 
distance. For Nd > 2, the droplets arrange mostly in triangular struc-
tures, and form a microscopic crystal with a droplet distance of 
d = 2–3 µm. Owing to the isotropy of the repulsion between droplets 
in the radial plane, we expect the triangular configuration to have the 
lowest energy. Because of the repelling dipolar force between the drop-
lets, we observe in the radial direction nearly round, discrete droplets 
with possible weak overlap to neighbouring ones.

Comparing our quantum ferrofluid with a classical ferrofluid, very 
similar behaviour and patterns have been observed on a superhydro-
phobic surface3. In this classical-ferrofluid system, a single droplet 
first deforms as the external magnetic field increases, and then divides 
into two droplets when some critical field is reached. For a quantum 
ferrofluid, a single droplet should be unstable for a < add, owing to 
the attractive part of the dipolar interaction, and so should collapse. 
Although, the counteracting quantum pressure—the zero-point energy 
that exists as a result of an external trapping potential—can compen-
sate attraction and prevent collapse26, mean field calculations18 predict 
this not to be the case. Our observation of stable droplet ensembles 
is therefore striking, and further work is needed to understand their 
stability. A possible stabilizing effect is that of quantum fluctuations, 
leading to beyond mean-field effects27. Such stabilization has been sug-
gested in a similar situation of competing attraction and repulsion28, 
and an increased effect of quantum fluctuations has been calculated 
for strongly dipolar gases29.

As further quantitative statistical analysis, we computed the 
Fourier spectrum S(k) of the obtained images (Fig. 2a–c). The pat-
terns are visible as a local maximum in S(k) at finite momentum 
k = 2π/d ≈ 2.5 µm−1, whereas the spectrum of a BEC monotonically 
decreases with k. We define the spectral weight
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which is a quantity that represents the strength of the structured states, 
and normalize it such that a BEC has SWBEC = 1. After a quench of 
the interactions from a ≈ add to a ≈ abg, we statistically investigated the 
pattern-formation time and the lifetime of these patterns (Fig. 2d). We 
repeated this measurement 13 times and found statistically that the 
pattern is fully developed after 7 ms, and has a 1/e lifetime of about 
300 ms. The decay of the droplet structure is accompanied by a decrease 
in the number of atoms, with a 1/e lifetime of about 130 ms, while the 
residual thermal cloud is constant. Owing to the decreasing number 
of atoms, the structures evolve back to lower numbers of droplets, Nd, 
until they merge back into one droplet (insets of Fig. 2d). In compari-
son, because we measured lifetimes of a non-structured BEC of more 
than 5 s, we assume increased three-body losses as a reason for the 
reduced lifetime. One indication of this is the measured atomic peak 
density for droplets of n ! 5 × 1020 m−3, which is greater than the den-
sity of a BEC, n ≈ 1020 m−3.

To explore the nature of this instability, we performed the following 
experimental sequence, depicted in Fig. 3a. We prepared the BEC close 
to the Feshbach resonance with a ≈ add and ramped the magnetic field 
linearly to varying values near the instability point. We ensured that the 
structures were formed within 10 ms, even for values of the magnetic 
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Figure 1 | Growth of a microscopic droplet crystal. a, Schematic of the 
experimental procedure. We prepared a stable, strongly dipolar Dy BEC 
with a ≈ add in a pancake-shaped trap (left). By decreasing the scattering 
length a, we induced an instability close to a ≈ abg. Following this 
instability, the atoms clustered to droplets in a triangular pattern (right). 
b, Representative single samples of droplet patterns imaged in situ, with 
droplet numbers, Nd, ranging from two to ten. c, We used a set of 112 
realizations with different numbers of droplets and atoms for a statistical 
analysis. The plot shows the mean number of atoms as a function of the 
number of droplets Nd, with error bars indicating the standard deviation. 
The fitted linear relation (grey dashed line) has a slope of 1,750(300) atoms 
per droplet. This shows that increasing the number of atoms results in 
growth of the microscopic droplet crystal.

© 2016 Macmillan Publishers Limited. All rights reserved
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Quenching to dipole dominated 
regime experiments observe stable 
long-lived droplet crystals

• Lifetime > 100’s ms 
• ~1000 atoms per droplet 
• ~3 micron spacing  
• peak density > 5×1020m-3 

•  

Depletion and fluctuations of a trapped dipolar Bose-Einstein condensate in the roton regime

P. B. Blakie,⇤ D. Baillie, and R. N. Bisset
Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand.

We consider the non-condensate density and density fluctuations of a trapped dipolar Bose-Einstein conden-
sate, focusing on the regime where a roton-like excitation spectrum develops. Our results show that a character-
istic peak in the non-condensate density occurs at trap center due to the rotons. In this regime we also find that
the anomalous density becomes positive and peaked, giving rise to enhanced density fluctuations. We calculate
the non-condensate density in momentum space and show that a small momentum halo is associated with the
roton excitations.

PACS numbers: 67.85-d, 67.85.Bc
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What is this new state?
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In Fig. 1b, we show typical in situ images of the resultant triangular 
patterns for the quantum ferrofluid with different numbers of droplets, 
Nd, ranging from two to ten. To analyse the average number of atoms 

per droplet, we count the number of droplets Nd in relation to the total 
number of atoms. Figure 1c indicates a linear dependence between Nd 
and the number of atoms, with a slope of 1,750(300) atoms per droplet. 
For Nd = 2, we observe a droplet distance of d = 3.0(4) µm. The droplets, 
which have a large effective dipole moment of Ndµ, strongly repel each 
other while the radial trapping applies a restoring force. Hence, the dis-
tance d can be calculated using a simplified one-dimensional classical 
system by minimizing the energy of the system.

We assume two strongly dipolar particles with 1,750 times the mass 
and magnetic moment of a Dy atom that are confined in a harmonic 
trap. For our experimental parameters, these particles minimize their 
energy with a distance of d = 3.3 µm, in agreement with the observed 
distance. For Nd > 2, the droplets arrange mostly in triangular struc-
tures, and form a microscopic crystal with a droplet distance of 
d = 2–3 µm. Owing to the isotropy of the repulsion between droplets 
in the radial plane, we expect the triangular configuration to have the 
lowest energy. Because of the repelling dipolar force between the drop-
lets, we observe in the radial direction nearly round, discrete droplets 
with possible weak overlap to neighbouring ones.

Comparing our quantum ferrofluid with a classical ferrofluid, very 
similar behaviour and patterns have been observed on a superhydro-
phobic surface3. In this classical-ferrofluid system, a single droplet 
first deforms as the external magnetic field increases, and then divides 
into two droplets when some critical field is reached. For a quantum 
ferrofluid, a single droplet should be unstable for a < add, owing to 
the attractive part of the dipolar interaction, and so should collapse. 
Although, the counteracting quantum pressure—the zero-point energy 
that exists as a result of an external trapping potential—can compen-
sate attraction and prevent collapse26, mean field calculations18 predict 
this not to be the case. Our observation of stable droplet ensembles 
is therefore striking, and further work is needed to understand their 
stability. A possible stabilizing effect is that of quantum fluctuations, 
leading to beyond mean-field effects27. Such stabilization has been sug-
gested in a similar situation of competing attraction and repulsion28, 
and an increased effect of quantum fluctuations has been calculated 
for strongly dipolar gases29.

As further quantitative statistical analysis, we computed the 
Fourier spectrum S(k) of the obtained images (Fig. 2a–c). The pat-
terns are visible as a local maximum in S(k) at finite momentum 
k = 2π/d ≈ 2.5 µm−1, whereas the spectrum of a BEC monotonically 
decreases with k. We define the spectral weight
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which is a quantity that represents the strength of the structured states, 
and normalize it such that a BEC has SWBEC = 1. After a quench of 
the interactions from a ≈ add to a ≈ abg, we statistically investigated the 
pattern-formation time and the lifetime of these patterns (Fig. 2d). We 
repeated this measurement 13 times and found statistically that the 
pattern is fully developed after 7 ms, and has a 1/e lifetime of about 
300 ms. The decay of the droplet structure is accompanied by a decrease 
in the number of atoms, with a 1/e lifetime of about 130 ms, while the 
residual thermal cloud is constant. Owing to the decreasing number 
of atoms, the structures evolve back to lower numbers of droplets, Nd, 
until they merge back into one droplet (insets of Fig. 2d). In compari-
son, because we measured lifetimes of a non-structured BEC of more 
than 5 s, we assume increased three-body losses as a reason for the 
reduced lifetime. One indication of this is the measured atomic peak 
density for droplets of n ! 5 × 1020 m−3, which is greater than the den-
sity of a BEC, n ≈ 1020 m−3.

To explore the nature of this instability, we performed the following 
experimental sequence, depicted in Fig. 3a. We prepared the BEC close 
to the Feshbach resonance with a ≈ add and ramped the magnetic field 
linearly to varying values near the instability point. We ensured that the 
structures were formed within 10 ms, even for values of the magnetic 
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Figure 1 | Growth of a microscopic droplet crystal. a, Schematic of the 
experimental procedure. We prepared a stable, strongly dipolar Dy BEC 
with a ≈ add in a pancake-shaped trap (left). By decreasing the scattering 
length a, we induced an instability close to a ≈ abg. Following this 
instability, the atoms clustered to droplets in a triangular pattern (right). 
b, Representative single samples of droplet patterns imaged in situ, with 
droplet numbers, Nd, ranging from two to ten. c, We used a set of 112 
realizations with different numbers of droplets and atoms for a statistical 
analysis. The plot shows the mean number of atoms as a function of the 
number of droplets Nd, with error bars indicating the standard deviation. 
The fitted linear relation (grey dashed line) has a slope of 1,750(300) atoms 
per droplet. This shows that increasing the number of atoms results in 
growth of the microscopic droplet crystal.

© 2016 Macmillan Publishers Limited. All rights reserved
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In Fig. 1b, we show typical in situ images of the resultant triangular 
patterns for the quantum ferrofluid with different numbers of droplets, 
Nd, ranging from two to ten. To analyse the average number of atoms 

per droplet, we count the number of droplets Nd in relation to the total 
number of atoms. Figure 1c indicates a linear dependence between Nd 
and the number of atoms, with a slope of 1,750(300) atoms per droplet. 
For Nd = 2, we observe a droplet distance of d = 3.0(4) µm. The droplets, 
which have a large effective dipole moment of Ndµ, strongly repel each 
other while the radial trapping applies a restoring force. Hence, the dis-
tance d can be calculated using a simplified one-dimensional classical 
system by minimizing the energy of the system.

We assume two strongly dipolar particles with 1,750 times the mass 
and magnetic moment of a Dy atom that are confined in a harmonic 
trap. For our experimental parameters, these particles minimize their 
energy with a distance of d = 3.3 µm, in agreement with the observed 
distance. For Nd > 2, the droplets arrange mostly in triangular struc-
tures, and form a microscopic crystal with a droplet distance of 
d = 2–3 µm. Owing to the isotropy of the repulsion between droplets 
in the radial plane, we expect the triangular configuration to have the 
lowest energy. Because of the repelling dipolar force between the drop-
lets, we observe in the radial direction nearly round, discrete droplets 
with possible weak overlap to neighbouring ones.

Comparing our quantum ferrofluid with a classical ferrofluid, very 
similar behaviour and patterns have been observed on a superhydro-
phobic surface3. In this classical-ferrofluid system, a single droplet 
first deforms as the external magnetic field increases, and then divides 
into two droplets when some critical field is reached. For a quantum 
ferrofluid, a single droplet should be unstable for a < add, owing to 
the attractive part of the dipolar interaction, and so should collapse. 
Although, the counteracting quantum pressure—the zero-point energy 
that exists as a result of an external trapping potential—can compen-
sate attraction and prevent collapse26, mean field calculations18 predict 
this not to be the case. Our observation of stable droplet ensembles 
is therefore striking, and further work is needed to understand their 
stability. A possible stabilizing effect is that of quantum fluctuations, 
leading to beyond mean-field effects27. Such stabilization has been sug-
gested in a similar situation of competing attraction and repulsion28, 
and an increased effect of quantum fluctuations has been calculated 
for strongly dipolar gases29.

As further quantitative statistical analysis, we computed the 
Fourier spectrum S(k) of the obtained images (Fig. 2a–c). The pat-
terns are visible as a local maximum in S(k) at finite momentum 
k = 2π/d ≈ 2.5 µm−1, whereas the spectrum of a BEC monotonically 
decreases with k. We define the spectral weight
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which is a quantity that represents the strength of the structured states, 
and normalize it such that a BEC has SWBEC = 1. After a quench of 
the interactions from a ≈ add to a ≈ abg, we statistically investigated the 
pattern-formation time and the lifetime of these patterns (Fig. 2d). We 
repeated this measurement 13 times and found statistically that the 
pattern is fully developed after 7 ms, and has a 1/e lifetime of about 
300 ms. The decay of the droplet structure is accompanied by a decrease 
in the number of atoms, with a 1/e lifetime of about 130 ms, while the 
residual thermal cloud is constant. Owing to the decreasing number 
of atoms, the structures evolve back to lower numbers of droplets, Nd, 
until they merge back into one droplet (insets of Fig. 2d). In compari-
son, because we measured lifetimes of a non-structured BEC of more 
than 5 s, we assume increased three-body losses as a reason for the 
reduced lifetime. One indication of this is the measured atomic peak 
density for droplets of n ! 5 × 1020 m−3, which is greater than the den-
sity of a BEC, n ≈ 1020 m−3.

To explore the nature of this instability, we performed the following 
experimental sequence, depicted in Fig. 3a. We prepared the BEC close 
to the Feshbach resonance with a ≈ add and ramped the magnetic field 
linearly to varying values near the instability point. We ensured that the 
structures were formed within 10 ms, even for values of the magnetic 
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Figure 1 | Growth of a microscopic droplet crystal. a, Schematic of the 
experimental procedure. We prepared a stable, strongly dipolar Dy BEC 
with a ≈ add in a pancake-shaped trap (left). By decreasing the scattering 
length a, we induced an instability close to a ≈ abg. Following this 
instability, the atoms clustered to droplets in a triangular pattern (right). 
b, Representative single samples of droplet patterns imaged in situ, with 
droplet numbers, Nd, ranging from two to ten. c, We used a set of 112 
realizations with different numbers of droplets and atoms for a statistical 
analysis. The plot shows the mean number of atoms as a function of the 
number of droplets Nd, with error bars indicating the standard deviation. 
The fitted linear relation (grey dashed line) has a slope of 1,750(300) atoms 
per droplet. This shows that increasing the number of atoms results in 
growth of the microscopic droplet crystal.
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Arrested by Higher Order Interaction

Depletion and fluctuations of a trapped dipolar Bose-Einstein condensate in the roton regime

P. B. Blakie,⇤ D. Baillie, and R. N. Bisset
Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand.

We consider the non-condensate density and density fluctuations of a trapped dipolar Bose-Einstein conden-
sate, focusing on the regime where a roton-like excitation spectrum develops. Our results show that a character-
istic peak in the non-condensate density occurs at trap center due to the rotons. In this regime we also find that
the anomalous density becomes positive and peaked, giving rise to enhanced density fluctuations. We calculate
the non-condensate density in momentum space and show that a small momentum halo is associated with the
roton excitations.

PACS numbers: 67.85-d, 67.85.Bc
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Quantum Fluctuations

T. D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).  
T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 (1957) 
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LHY Corrections
• Are small for a dilute gas: 

• First quantified in 2010 with Fermi gas on the BCS-
BEC crossover measuring the equation of state

Solomon Group, Science 328, 729 (2010)  
(regime: weakly bound molecular bosons)
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Generalised mean field theory for dipolar BEC
DDI correction valid for
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LHY for a dipolar condensate:
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Chemical potential correction:
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and the dipoles are polarized along z. This choice is a good approximation to the motivating ex-

periments reported in Ref. [19], and affords a more efficient and accurate solution for the ground

states.

Within a local density treatment of the quantum fluctuations we can introduce a generalized

time-dependent Gross-Pitaevskii equation [38]
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is for dipoles of magnetic moment µ polarized along z with ✓ being the angle between r and the

z-axis.

FIG. 1. (color online) The quantum fluctuation parameter �QF for each species is indicated for (solid line)

164Dy and (solid line with symbols) 168Er cases as a function of as (where a0 is the Bohr radius). The

values where ✏dd = 1 for each species are indicated by small red boxes.

The last term in Eq. (2) accounts for the quantum fluctuations. In a homogeneous dipolar

condensate quantum fluctuations are predicted to shift the chemical potential, a correction of the

form �µ = �QFn3/2 [32], where n is the density. The quantum fluctuation parameter �QF is

determined by the excitation spectrum, and thus depends on both the contact and DDIs. Making

the local density approximation by setting n ! n(r) = | (r)|2 yields the term appearing in our

generalized GPE. Some evidence for the applicability of the fluctuation term [as used in Eq. (2)]

in the regime of (HDP) droplet ground states has been provided by recent path-integral Monte

Carlo calculations [27] for cases with ⇠ 10

3 atoms. More such studies, particularly at larger

numbers are necessary to assess the accuracy of the this treatment over a broader parameter regime

relevant to experiments. The general validity requirement for including quantum fluctuations in
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Path-integral Monte Carlo calculations show good 
agreement with generalised GPE 
 [H. Saito, J. Phys. Soc. of Jap. 85, 053001 (2016)]

Dipolar LHY theory:
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Phase diagram for trapped droplets
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 Droplet

Modeling the Stuttgart Experiment 

Dy-164 
parameters

Bisset et al., Phys. Rev. A 94, 033619 (2016) 
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Feshbach quench used in experiment

N=

5

FIG. 4. (color online) Surface marking the phase transition between
the low density (LDP) and high density (HDP) phases of a dyspro-
sium dipolar condensate. The critical line is indicated as a thick black
line. Parameters are for 164Dy, and the harmonic trap is taken to have
a fixed geometric mean trap frequency of !̄/2⇡ = 64.6Hz. Phase di-
agram calculated using the variational ansatz. Examples of two paths
are indicated as vertical lines that correspond to an s-wave quench
that (1) passes across the phase transition, and (2) avoids the phase
transition by evolving continuously from the LDP to HDP outside
the critical line. Path (1) is the interaction quench used in Ref. [19].
The two curves which lie on the surface are the cuts that are explored
further in Figs. 5 (a) and 6 (c).

of N , while at small N the surface decreases rapidly with de-
creasing N . We now explore these two regimes in more detail.

1. Large-N regime

In Fig. 5(a) we show a slice of the phase diagram in (�, as)-
space for N = 15 ⇥ 10

3 164Dy atoms. We have shaded
this plot by the ground state peak density to reveal the sud-
den change that occurs upon crossing the phase boundary. As
the critical point is approached along the phase transition line,
the difference in the HDP and LDP densities decreases. For
reference, the phase transition line in this figure corresponds
to the red line on the phase boundary surface in Fig. 4. In
this large-N regime the phase transition only occurs in oblate
traps, arising from an interplay of the anisotropy of the DDI
and the harmonic confinement. The stationary states for this
case, with � = 2.96, were already presented in Fig. 2, reveal-
ing the typical properties of the LDP and HDP states in this
regime. Notably, in the LDP the trap potential energy is mini-
mized by the condensate (approximately) adopting the aspect
ratio of the trap, and in this configuration the DDI energy is
positive. In the HDP the condensate adopts a prolate geometry
that minimizes the DDI, but at the expense of higher contact-
interaction, quantum-fluctuation and z-component of trap po-
tential energies. Generally we observe that as as decreases
the ground state density increases. This is because below the
phase boundary the quantum fluctuations play an important
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FIG. 5. (color online) Phase diagram as a function of s-wave scat-
tering length and trap aspect ratio for (a) dysprosium and (b) erbium.
The shading represents the peak density of the ground state. Black
line indicates the phase transition, the large dot marks the critical
point (CP) and the gray lines bound the region of metastable co-
existence. Note that for erbium the density eventually exceeds the
maximum given in the colorbar but we allow this saturation to facil-
itate the comparison with dysprosium. The HDP generally exists at
smaller as than the LDP. Parameters: N = 15000, !̄/2⇡ = 64.6 Hz.
The red line with dots indicates the quench path used in Ref. [19].

role in stabilizing the condensate against the attractive DDIs.
As as and hence the value of �QF decreases (see Fig. 1), the
peak density has to increase for the quantum fluctuation term
to balance the DDIs.

In Fig. 5(b), we show the phase diagram for 168Er. Because
this atom has a much smaller value of add the dipole domi-
nated regime occurs at a much lower s-wave scattering length,
hence the phase boundary is at lower values of as compared
to the dysprosium results. At these values of as the value of
�QF is much smaller than for 164Dy (see Fig. 1) and hence the
peak density of the droplets is much higher.

2. Small N regime

We now turn to considering the behavior of the phase dia-
gram in the small-N regime. Here the kinetic energy (quan-
tum pressure) term becomes important in determining the sta-

Phase diagram depends on N,  
results here for



Simulation of Stuttgart Experiment 

Generalised GPE dynamics. Noise added to initial condensate 
Scattering length quenched in 0.5 ms, trap left on
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Droplet “crystal”
• Generalised GPE suggests droplets not phase 

coherent with each other (i.e.not a super-solid) 

• Nucleation-like formation process.  

• Size and properties of droplets in crystal not yet 
quantitatively understood (inter-droplet interactions 
important?)
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FIG. 5. (Color online) Pathways to the HDL phase and formation
dynamics. (a) The phase diagram from Fig. 4 with pathways added
to show the two processes (path 1 and path 2) we use to take the
system from phase diagram location A (coordinates: as = 130 a0,
� = 2.96) to location B (coordinates: as = 80 a0, � = 2.96). The
paths are traversed over a time of ⌧Q = 30ms. Simulation along
path 1: (b) Initial state and (c) final state 10 ms after the process is
complete (i.e. at t = ⌧Q + 10ms). Simulation along path 2: (d)
Initial state and (e) final state 10 ms after the process is complete.
(f) The evolution of the peak density of the system during the evolu-
tion. Three-dimensional density isosurfaces of the states in (c) and
(e) are shown in Fig. 1(a) and (b), respectively. Other parameters as
in Fig. 2.

• Path 1 is that considered in experiments 
• Path 2 goes around the critical point 
• Here use long quench time: 

• Perform 3D solutions including higher order term, thermal & 
quantum initial noise

Depletion and fluctuations of a trapped dipolar Bose-Einstein condensate in the roton regime

P. B. Blakie,⇤ D. Baillie, and R. N. Bisset
Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand.

We consider the non-condensate density and density fluctuations of a trapped dipolar Bose-Einstein conden-
sate, focusing on the regime where a roton-like excitation spectrum develops. Our results show that a character-
istic peak in the non-condensate density occurs at trap center due to the rotons. In this regime we also find that
the anomalous density becomes positive and peaked, giving rise to enhanced density fluctuations. We calculate
the non-condensate density in momentum space and show that a small momentum halo is associated with the
roton excitations.
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FIG. 5. (Color online) Pathways to the HDL phase and formation
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Depletion and fluctuations of a trapped dipolar Bose-Einstein condensate in the roton regime

P. B. Blakie,⇤ D. Baillie, and R. N. Bisset
Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago, Dunedin, New Zealand.

We consider the non-condensate density and density fluctuations of a trapped dipolar Bose-Einstein conden-
sate, focusing on the regime where a roton-like excitation spectrum develops. Our results show that a character-
istic peak in the non-condensate density occurs at trap center due to the rotons. In this regime we also find that
the anomalous density becomes positive and peaked, giving rise to enhanced density fluctuations. We calculate
the non-condensate density in momentum space and show that a small momentum halo is associated with the
roton excitations.
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FIG. 5. (Color online) Pathways to the HDL phase and formation
dynamics. (a) The phase diagram from Fig. 4 with pathways added
to show the two processes (path 1 and path 2) we use to take the
system from phase diagram location A (coordinates: as = 130 a0,
� = 2.96) to location B (coordinates: as = 80 a0, � = 2.96). The
paths are traversed over a time of ⌧Q = 30ms. Simulation along
path 1: (b) Initial state and (c) final state 10 ms after the process is
complete (i.e. at t = ⌧Q + 10ms). Simulation along path 2: (d)
Initial state and (e) final state 10 ms after the process is complete.
(f) The evolution of the peak density of the system during the evolu-
tion. Three-dimensional density isosurfaces of the states in (c) and
(e) are shown in Fig. 1(a) and (b), respectively. Other parameters as
in Fig. 2.
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Initial state and (e) final state 10 ms after the process is complete.
(f) The evolution of the peak density of the system during the evolu-
tion. Three-dimensional density isosurfaces of the states in (c) and
(e) are shown in Fig. 1(a) and (b), respectively. Other parameters as
in Fig. 2.
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In Fig. 1b, we show typical in situ images of the resultant triangular 
patterns for the quantum ferrofluid with different numbers of droplets, 
Nd, ranging from two to ten. To analyse the average number of atoms 

per droplet, we count the number of droplets Nd in relation to the total 
number of atoms. Figure 1c indicates a linear dependence between Nd 
and the number of atoms, with a slope of 1,750(300) atoms per droplet. 
For Nd = 2, we observe a droplet distance of d = 3.0(4) µm. The droplets, 
which have a large effective dipole moment of Ndµ, strongly repel each 
other while the radial trapping applies a restoring force. Hence, the dis-
tance d can be calculated using a simplified one-dimensional classical 
system by minimizing the energy of the system.

We assume two strongly dipolar particles with 1,750 times the mass 
and magnetic moment of a Dy atom that are confined in a harmonic 
trap. For our experimental parameters, these particles minimize their 
energy with a distance of d = 3.3 µm, in agreement with the observed 
distance. For Nd > 2, the droplets arrange mostly in triangular struc-
tures, and form a microscopic crystal with a droplet distance of 
d = 2–3 µm. Owing to the isotropy of the repulsion between droplets 
in the radial plane, we expect the triangular configuration to have the 
lowest energy. Because of the repelling dipolar force between the drop-
lets, we observe in the radial direction nearly round, discrete droplets 
with possible weak overlap to neighbouring ones.

Comparing our quantum ferrofluid with a classical ferrofluid, very 
similar behaviour and patterns have been observed on a superhydro-
phobic surface3. In this classical-ferrofluid system, a single droplet 
first deforms as the external magnetic field increases, and then divides 
into two droplets when some critical field is reached. For a quantum 
ferrofluid, a single droplet should be unstable for a < add, owing to 
the attractive part of the dipolar interaction, and so should collapse. 
Although, the counteracting quantum pressure—the zero-point energy 
that exists as a result of an external trapping potential—can compen-
sate attraction and prevent collapse26, mean field calculations18 predict 
this not to be the case. Our observation of stable droplet ensembles 
is therefore striking, and further work is needed to understand their 
stability. A possible stabilizing effect is that of quantum fluctuations, 
leading to beyond mean-field effects27. Such stabilization has been sug-
gested in a similar situation of competing attraction and repulsion28, 
and an increased effect of quantum fluctuations has been calculated 
for strongly dipolar gases29.

As further quantitative statistical analysis, we computed the 
Fourier spectrum S(k) of the obtained images (Fig. 2a–c). The pat-
terns are visible as a local maximum in S(k) at finite momentum 
k = 2π/d ≈ 2.5 µm−1, whereas the spectrum of a BEC monotonically 
decreases with k. We define the spectral weight
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which is a quantity that represents the strength of the structured states, 
and normalize it such that a BEC has SWBEC = 1. After a quench of 
the interactions from a ≈ add to a ≈ abg, we statistically investigated the 
pattern-formation time and the lifetime of these patterns (Fig. 2d). We 
repeated this measurement 13 times and found statistically that the 
pattern is fully developed after 7 ms, and has a 1/e lifetime of about 
300 ms. The decay of the droplet structure is accompanied by a decrease 
in the number of atoms, with a 1/e lifetime of about 130 ms, while the 
residual thermal cloud is constant. Owing to the decreasing number 
of atoms, the structures evolve back to lower numbers of droplets, Nd, 
until they merge back into one droplet (insets of Fig. 2d). In compari-
son, because we measured lifetimes of a non-structured BEC of more 
than 5 s, we assume increased three-body losses as a reason for the 
reduced lifetime. One indication of this is the measured atomic peak 
density for droplets of n ! 5 × 1020 m−3, which is greater than the den-
sity of a BEC, n ≈ 1020 m−3.

To explore the nature of this instability, we performed the following 
experimental sequence, depicted in Fig. 3a. We prepared the BEC close 
to the Feshbach resonance with a ≈ add and ramped the magnetic field 
linearly to varying values near the instability point. We ensured that the 
structures were formed within 10 ms, even for values of the magnetic 
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Figure 1 | Growth of a microscopic droplet crystal. a, Schematic of the 
experimental procedure. We prepared a stable, strongly dipolar Dy BEC 
with a ≈ add in a pancake-shaped trap (left). By decreasing the scattering 
length a, we induced an instability close to a ≈ abg. Following this 
instability, the atoms clustered to droplets in a triangular pattern (right). 
b, Representative single samples of droplet patterns imaged in situ, with 
droplet numbers, Nd, ranging from two to ten. c, We used a set of 112 
realizations with different numbers of droplets and atoms for a statistical 
analysis. The plot shows the mean number of atoms as a function of the 
number of droplets Nd, with error bars indicating the standard deviation. 
The fitted linear relation (grey dashed line) has a slope of 1,750(300) atoms 
per droplet. This shows that increasing the number of atoms results in 
growth of the microscopic droplet crystal.

© 2016 Macmillan Publishers Limited. All rights reserved
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In Fig. 1b, we show typical in situ images of the resultant triangular 
patterns for the quantum ferrofluid with different numbers of droplets, 
Nd, ranging from two to ten. To analyse the average number of atoms 

per droplet, we count the number of droplets Nd in relation to the total 
number of atoms. Figure 1c indicates a linear dependence between Nd 
and the number of atoms, with a slope of 1,750(300) atoms per droplet. 
For Nd = 2, we observe a droplet distance of d = 3.0(4) µm. The droplets, 
which have a large effective dipole moment of Ndµ, strongly repel each 
other while the radial trapping applies a restoring force. Hence, the dis-
tance d can be calculated using a simplified one-dimensional classical 
system by minimizing the energy of the system.

We assume two strongly dipolar particles with 1,750 times the mass 
and magnetic moment of a Dy atom that are confined in a harmonic 
trap. For our experimental parameters, these particles minimize their 
energy with a distance of d = 3.3 µm, in agreement with the observed 
distance. For Nd > 2, the droplets arrange mostly in triangular struc-
tures, and form a microscopic crystal with a droplet distance of 
d = 2–3 µm. Owing to the isotropy of the repulsion between droplets 
in the radial plane, we expect the triangular configuration to have the 
lowest energy. Because of the repelling dipolar force between the drop-
lets, we observe in the radial direction nearly round, discrete droplets 
with possible weak overlap to neighbouring ones.

Comparing our quantum ferrofluid with a classical ferrofluid, very 
similar behaviour and patterns have been observed on a superhydro-
phobic surface3. In this classical-ferrofluid system, a single droplet 
first deforms as the external magnetic field increases, and then divides 
into two droplets when some critical field is reached. For a quantum 
ferrofluid, a single droplet should be unstable for a < add, owing to 
the attractive part of the dipolar interaction, and so should collapse. 
Although, the counteracting quantum pressure—the zero-point energy 
that exists as a result of an external trapping potential—can compen-
sate attraction and prevent collapse26, mean field calculations18 predict 
this not to be the case. Our observation of stable droplet ensembles 
is therefore striking, and further work is needed to understand their 
stability. A possible stabilizing effect is that of quantum fluctuations, 
leading to beyond mean-field effects27. Such stabilization has been sug-
gested in a similar situation of competing attraction and repulsion28, 
and an increased effect of quantum fluctuations has been calculated 
for strongly dipolar gases29.

As further quantitative statistical analysis, we computed the 
Fourier spectrum S(k) of the obtained images (Fig. 2a–c). The pat-
terns are visible as a local maximum in S(k) at finite momentum 
k = 2π/d ≈ 2.5 µm−1, whereas the spectrum of a BEC monotonically 
decreases with k. We define the spectral weight
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which is a quantity that represents the strength of the structured states, 
and normalize it such that a BEC has SWBEC = 1. After a quench of 
the interactions from a ≈ add to a ≈ abg, we statistically investigated the 
pattern-formation time and the lifetime of these patterns (Fig. 2d). We 
repeated this measurement 13 times and found statistically that the 
pattern is fully developed after 7 ms, and has a 1/e lifetime of about 
300 ms. The decay of the droplet structure is accompanied by a decrease 
in the number of atoms, with a 1/e lifetime of about 130 ms, while the 
residual thermal cloud is constant. Owing to the decreasing number 
of atoms, the structures evolve back to lower numbers of droplets, Nd, 
until they merge back into one droplet (insets of Fig. 2d). In compari-
son, because we measured lifetimes of a non-structured BEC of more 
than 5 s, we assume increased three-body losses as a reason for the 
reduced lifetime. One indication of this is the measured atomic peak 
density for droplets of n ! 5 × 1020 m−3, which is greater than the den-
sity of a BEC, n ≈ 1020 m−3.

To explore the nature of this instability, we performed the following 
experimental sequence, depicted in Fig. 3a. We prepared the BEC close 
to the Feshbach resonance with a ≈ add and ramped the magnetic field 
linearly to varying values near the instability point. We ensured that the 
structures were formed within 10 ms, even for values of the magnetic 
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Figure 1 | Growth of a microscopic droplet crystal. a, Schematic of the 
experimental procedure. We prepared a stable, strongly dipolar Dy BEC 
with a ≈ add in a pancake-shaped trap (left). By decreasing the scattering 
length a, we induced an instability close to a ≈ abg. Following this 
instability, the atoms clustered to droplets in a triangular pattern (right). 
b, Representative single samples of droplet patterns imaged in situ, with 
droplet numbers, Nd, ranging from two to ten. c, We used a set of 112 
realizations with different numbers of droplets and atoms for a statistical 
analysis. The plot shows the mean number of atoms as a function of the 
number of droplets Nd, with error bars indicating the standard deviation. 
The fitted linear relation (grey dashed line) has a slope of 1,750(300) atoms 
per droplet. This shows that increasing the number of atoms results in 
growth of the microscopic droplet crystal.
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Properties of a dipolar condensate with three-body interactions

P. B. Blakie1

1Department of Physics, Centre for Quantum Science,
and Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin, New Zealand

We obtain the phase diagram for a harmonically trapped dilute dipolar condensate with a short ranged con-
servative three-body interaction. We show that this system supports two distinct fluid states: a usual condensate
state and a self-cohering droplet state. We develop a simple model to quantify the energetics of these states,
which we verify with full numerical calculations. Based on our simple model we develop a phase diagram
showing that there is a first order phase transition between the states. Using dynamical simulations we explore
the phase transition dynamics, revealing that the droplet crystal observed in previous work is an excited state
that arises from heating as the system crosses the phase transition. Utilising our phase diagram we show it is
feasible to produce a single droplet by dynamically adjusting the confining potential.

PACS numbers: 67.85.Hj, 67.80.K-

I. INTRODUCTION

Quantum gases with significant dipole moments are an in-
teresting playground for exploring the role of long-ranged in-
teractions on superfluidity and spontaneous crystallization in a
quantum fluid [1–6]. In the regime of dominant dipole-dipole
interactions (DDIs), where crystallization might be expected
to occur, dilute gases are fragile to local mechanical collapse
[3, 7–11]. In order to stabilize this system an effective interac-
tion is required that can balance the tendency of the dominant
DDI to collapse the system towards infinite density spikes. A
repulsive short-ranged three-body interaction (TBI) [12–15]
meets these requirements: it produces an energy contribu-
tion that increases with n3, where n is the number density,
and thus dominates over the two-body DDI as the density in-
creases. A theoretical proposal has shown how to produce a
repulsive TBI in a dilute gas of polar molecules [16]. It is also
expected that significant TBIs could emerge in the vicinity
of Feshbach resonances used to modify the s-wave scattering
length [12, 13]. Indeed, some evidence for such interactions
has been presented in experiments with 85Rb [17].

In this paper we consider the ground state properties of a
dilute gas of dipolar atoms with an appreciable TBI. We show
that this system has low-density and high-density ground
states. The low density states are typical condensate states,
with properties largely determined by the two-body interac-
tions (DDI and the s-wave contact interaction) and the external
confining potential. The high-density state, which can occur
when the DDI dominates over the two-body contact interac-
tion, is a self-cohering droplet in which the attractive DDI is
balanced by the repulsive TBI. These states are self-cohering
in the sense that they are stable even when the confinement
in the plane transverse to the orientation of the dipole mo-
ments is removed. Previously, such self-cohering droplets (or
quasi-two-dimensional bright solitons) have been predicted
for dipolar condensates with negatively turned dipoles [18].
We show that the transition between the low- and high-density
states occurs in oblately confined traps via a first order phase
transition. We also show that depending on how that transi-
tion is crossed, either a crystal of droplets or a single droplet
can be produced, as shown in Fig. 1.

FIG. 1. (Color online) Examples of (a) a crystal of droplets and (b)
a single self-cohering droplet that can be produced when a dilute
dipolar gas with three-body interactions is taken through different
paths into the droplet phase. Red surface indicates a high-density
isosurface at n = 2⇥ 1020 m�3 and the light-blue surface indicates
a low-density isosurface at n = 0.2 ⇥ 1020 m�3. Parameters and
these results are discussed further in Fig. 5.

This work is also motivated by a recent experiment with
164Dy that observed the formation of a droplet crystal. A full
understanding of the key physics behind this observation has
yet to be developed. Two groups have simulated the forma-
tion dynamics by augmenting the standard meanfield descrip-
tion of this system with a TBI [19, 20]. Other recent work
[21, 22] has presented evidence that quantum fluctuations ef-
fects are important in stabilizing the droplets. The detailed
microscopic understanding of both proposed mechanisms is
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Properties of a dipolar condensate with three-body interactions

P. B. Blakie1

1Department of Physics, Centre for Quantum Science,
and Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin, New Zealand

We obtain the phase diagram for a harmonically trapped dilute dipolar condensate with a short ranged con-
servative three-body interaction. We show that this system supports two distinct fluid states: a usual condensate
state and a self-cohering droplet state. We develop a simple model to quantify the energetics of these states,
which we verify with full numerical calculations. Based on our simple model we develop a phase diagram
showing that there is a first order phase transition between the states. Using dynamical simulations we explore
the phase transition dynamics, revealing that the droplet crystal observed in previous work is an excited state
that arises from heating as the system crosses the phase transition. Utilising our phase diagram we show it is
feasible to produce a single droplet by dynamically adjusting the confining potential.

PACS numbers: 67.85.Hj, 67.80.K-

I. INTRODUCTION

Quantum gases with significant dipole moments are an in-
teresting playground for exploring the role of long-ranged in-
teractions on superfluidity and spontaneous crystallization in a
quantum fluid [1–6]. In the regime of dominant dipole-dipole
interactions (DDIs), where crystallization might be expected
to occur, dilute gases are fragile to local mechanical collapse
[3, 7–11]. In order to stabilize this system an effective interac-
tion is required that can balance the tendency of the dominant
DDI to collapse the system towards infinite density spikes. A
repulsive short-ranged three-body interaction (TBI) [12–15]
meets these requirements: it produces an energy contribu-
tion that increases with n3, where n is the number density,
and thus dominates over the two-body DDI as the density in-
creases. A theoretical proposal has shown how to produce a
repulsive TBI in a dilute gas of polar molecules [16]. It is also
expected that significant TBIs could emerge in the vicinity
of Feshbach resonances used to modify the s-wave scattering
length [12, 13]. Indeed, some evidence for such interactions
has been presented in experiments with 85Rb [17].

In this paper we consider the ground state properties of a
dilute gas of dipolar atoms with an appreciable TBI. We show
that this system has low-density and high-density ground
states. The low density states are typical condensate states,
with properties largely determined by the two-body interac-
tions (DDI and the s-wave contact interaction) and the external
confining potential. The high-density state, which can occur
when the DDI dominates over the two-body contact interac-
tion, is a self-cohering droplet in which the attractive DDI is
balanced by the repulsive TBI. These states are self-cohering
in the sense that they are stable even when the confinement
in the plane transverse to the orientation of the dipole mo-
ments is removed. Previously, such self-cohering droplets (or
quasi-two-dimensional bright solitons) have been predicted
for dipolar condensates with negatively turned dipoles [18].
We show that the transition between the low- and high-density
states occurs in oblately confined traps via a first order phase
transition. We also show that depending on how that transi-
tion is crossed, either a crystal of droplets or a single droplet
can be produced, as shown in Fig. 1.

FIG. 1. (Color online) Examples of (a) a crystal of droplets and (b)
a single self-cohering droplet that can be produced when a dilute
dipolar gas with three-body interactions is taken through different
paths into the droplet phase. Red surface indicates a high-density
isosurface at n = 2⇥ 1020 m�3 and the light-blue surface indicates
a low-density isosurface at n = 0.2 ⇥ 1020 m�3. Parameters and
these results are discussed further in Fig. 5.

This work is also motivated by a recent experiment with
164Dy that observed the formation of a droplet crystal. A full
understanding of the key physics behind this observation has
yet to be developed. Two groups have simulated the forma-
tion dynamics by augmenting the standard meanfield descrip-
tion of this system with a TBI [19, 20]. Other recent work
[21, 22] has presented evidence that quantum fluctuations ef-
fects are important in stabilizing the droplets. The detailed
microscopic understanding of both proposed mechanisms is
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In the absence of a trap and for fixed atomic 
number N there is a trivial uniform solution for the 
condensate wavefunction: 
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Phase diagram for free droplets

D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie, arXiv:1606.00824

Danny Baillie (U. Otago) Self-bound dipolar droplet QFG, 2016 4 / 19

E

V

=
1

2
g

s

n

2



1 +
128

15
p
⇡

p

na

3
s

�

,(1)

µ =
@E

@N

= g

s

n



1 +
32

3
p
⇡

p

na

3
s

�

,(2)

na

3
s

⌧ 1

na

3
s

⇠ 10�5 � 10�4

na

3
s

⇠ 1

�µLHY

✏dd ⇠ 1

✏dd > 1

✏dd < 1

n

3/2 ! | |3

�ELHY =
64

15
g

s

r

a

3
s

⇡

✓

1 +
3

2
✏

2
dd

◆

n

5/2

g

s

=
4⇡s

a

~2
m

�µLHY =
@�ELHY

@N

= �QFn
3/2

�QF =
32

3
g

r

a

3
s

⇡

✓

1 +
3

2
✏

2
dd

◆

E

V

=
1

2
g

s

n

2



1 +
128

15
p
⇡

p

na

3
s

�

,(3)

µ =
@E

@N

= g

s

n



1 +
32

3
p
⇡

p

na

3
s

�

,(4)

 ! 0 with E = 0
1

Trivial solution  
E = 0

Self-bound  
solutions 

E < 0

E

V

=
1

2
g

s

n

2



1 +
128

15
p
⇡

p

na

3
s

�

,(1)

µ =
@E

@N

= g

s

n



1 +
32

3
p
⇡

p

na

3
s

�

,(2)

na

3
s

⌧ 1

na

3
s

⇠ 10�5 � 10�4

na

3
s

⇠ 1

�µLHY

✏dd ⇠ 1

✏dd > 1

✏dd < 1

n

3/2 ! | |3

�ELHY =
64

15
g

s

r

a

3
s

⇡

✓

1 +
3

2
✏

2
dd

◆

n

5/2

g

s

=
4⇡s

a

~2
m

�µLHY =
@�ELHY

@N

= �QFn
3/2

�QF =
32

3
g

r

a

3
s

⇡

✓

1 +
3

2
✏

2
dd

◆

E

V

=
1

2
g

s

n

2



1 +
128

15
p
⇡

p

na

3
s

�

,(3)

µ =
@E

@N

= g

s

n



1 +
32

3
p
⇡

p

na

3
s

�

,(4)

 ! 0 with E = 0
1

Self-bound droplet phase diagram



self-bound droplet production

Three-body loss

i�
��

�t
=

ñ
�
�2�2

2m
+
m

2
(�2

��
2 + �2z2) + gn+�dd(r) + �QFn3/2 +

i�

2
L3n2
ô
�

Danny Baillie (U. Otago) Self-bound dipolar droplet QFG, 2016 8 / 19

Dominant loss mechanism:
three-body recombination

Generalised dipolar GPE including 3-body loss 
3-body loss rate relatively low for Dy and Er 
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Dynamics to as = 80a0

D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie, arXiv:1606.00824

Quench to as  =80a0 and trap removal (              )
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Path with quench
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Phase diagram path: as quench and trap removal



Dynamics without contact interaction quenchComparison: no as quench, just trap removal



Path without quench
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Phase diagram path: as quench and trap removalPhase diagram path: no as quench, just trap removal





Experiments
• Pfau Group in Stuttgart 

meability and m the atomic mass. To observe the self-bound
state, we shape an initially oblate Bose-Einstein condensate17

of 164Dy at large scattering length (BBEC = 7.089(5)G),
where the interaction is contact-dominated, by an additional
optical trap into a prolate shape along the magnetic field di-
rection. This reshaping is done in two stages: first, we ramp
a focussed beam at a wavelength of 532 nm aligned in the z
direction within 50 ms. With this attractive potential the ra-
dial trap frequencies are increased to change the trap aspect
ratio � = !

z

/!
⇢

from 3.9 down to 1.5. Second, we apply a
magnetic field gradient to the atomic cloud to levitate it by
compensating the gravitational force. In this configuration,
the cloud undergoes a continuous crossover from the BEC
state directly into the single droplet ground state when low-
ering the scattering length, bypassing a bistable region4, 18. In
the consecutive 50 ms we lower the field to various values be-
tween B = 6.831(5) � 6.469(5)G, indicated in figure 1b)
as hatched area, to lower the scattering length and create a
single droplet. We hold the atoms in this configuration for
10 ms before ramping the optical trap powers within 20 ms to
⇡ 5 % of their initial values, keeping a constant trap aspect
ratio. At this point we suddently turn off the trap and im-
age the cloud using far-detuned phase-contrast polarization
imaging after various levitation times up to tlevitate = 90ms.
This is schematically shown in figure 1a). Being sensitive
only to high densities, we observe that a thermal fraction ex-
pands very quickly, while a very small and dense cloud re-
mains for very long times. We interpret this as a self-bound
quantum droplet. The size of the quantum droplets is smaller
than our imaging resolution such that we observe astigmatic
diffraction (see figure 2a)). At specific fields, we observe
these droplets for times as long as tlevitate = 90ms. At
some time during the trap-free levitation, we observe that the
droplets have expanded. We interpret this behaviour by the
fact that droplets lose atoms due to three-body decay or evap-
oration of excitations until they reach a critical atom number
below which they are not self-bound anymore and evaporate
back into a gas phase. Given our shot-to-shot noise in the ini-
tial atom number, this critical number is reached for various
times. This behaviour is represented in figure 2a).

As a first analysis we count the images where we
still observe a single droplet out of 100 shots and plot the
survival probability for different magnetic fields in figure
2b) as histograms. The levitation time is changed between
tlevitate = 0ms, which basically represents a trapped cloud,
up to tlevitate = 90ms. We can see that for low scattering
length (B = 6.469(5)G) we always create a single droplet
but the lifetime is short. As the scattering length increases,
the lifetime increases as well. We find a maximal survival
probability for a magnetic field of B = 6.676(5)G. For even
higher scattering lengths we only find droplets at 0ms and
very few self-bound droplets. These histograms are in quali-
tative agreement with an increasing critical atom number and
decreasing atom loss rate in the droplets for increasing scat-
tering length as was observed in reference3 in a waveguide
configuration. However the precise evolution is very depen-
dent on the spread in initial atom number as well as fluctua-
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Figure 2: a) We show two traces of droplets for variable lev-
itation times at the same magnetic field of B = 6.676(5)G.
These images are not multiple images of the same droplet but
rather selected from a variety of images as the imaging pro-
cess is destructive. All images are rescaled to the maximum
optical density. In the first column we start with an atom
number much larger than the critical atom number for stable
droplets and observe a single droplet up to tlevitate = 70ms.
Between 70 - 90 ms the cloud reaches the critical atom num-
ber and evaporates back to a gas phase, observed as an ex-
panding cloud. In the second column we show a droplet
that starts with an atom number much closer to the criti-
cal atom number leading to an earlier evaporation, already
between 20 - 50 ms of levitation time. From this point the
cloud evaporates to the BEC phase and expands. b) His-
togram of the surviving probability of a single droplet as
function of levitation time and magnetic field. At low scat-
tering length (B = 6.469(5)G) we always observe droplets
for up to tlevitate = 30ms, followed by a fast decay which
is explained by fast atom number decay due to three-body
collisions. For increasing scattering length we observe an in-
crease of the lifetime of these droplets up to a magnetic field
of B = 6.676(5)G. At these conditions we observe a single
droplet of a size below our resolution after a levitation time
of tlevitate = 90ms. Further increase of the scattering length
shows a fast decay of self-bound droplets already for short
times (tlevitate = 20ms) which we interpret as originating
from an increase of the critical atom number to values close
to our initial atom number. For the highest scattering length
(B = 6.831(5)G) we barely create droplets in the trap.

tions in the critical atom number.

To obtain a more quantitative analysis of the critical
atom number of these droplets we intentionally evaporate
them after variable levitation times by increasing the mag-
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Quantum-Fluctuation-Driven Crossover from a Dilute Bose-Einstein Condensate
to a Macrodroplet in a Dipolar Quantum Fluid
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In a joint experimental and theoretical effort, we report on the formation of a macrodroplet state in an
ultracold bosonic gas of erbium atoms with strong dipolar interactions. By precise tuning of the s-wave
scattering length below the so-called dipolar length, we observe a smooth crossover of the ground state
from a dilute Bose-Einstein condensate to a dense macrodroplet state of more than 2 × 104 atoms. Based
on the study of collective excitations and loss features, we prove that quantum fluctuations stabilize the
ultracold gas far beyond the instability threshold imposed by mean-field interactions. Finally, we perform
expansion measurements, showing that although self-bound solutions are prevented by losses, the interplay
between quantum stabilization and losses results in a minimal time-of-flight expansion velocity at a finite
scattering length.

DOI: 10.1103/PhysRevX.6.041039 Subject Areas: Atomic and Molecular Physics,
Quantum Physics

I. INTRODUCTION

The extraordinary success of ultracold quantum gases
largely stems from the simplicity with which the physics at
the many-body level can be controlled and described,
allowing access to a wide range of theoretical models of
general interest [1]. Notably, the actual many-body inter-
actions are often very well captured via simple mean-field
(MF) potentials, proportional to the local particle density n
and accounting for the average mutual effect of all
neighboring particles [1]. Moreover, short-ranged inter-
actions, even if complex or unknown, can be simply
accounted for via a contact potential and parametrized
by the sole s-wave scattering length as, which in turn can
be widely tuned by means of Feshbach resonances (FRs)
[2]. The MF treatment of a Bose gas leads to the celebrated
Gross-Pitaevskii equation (GPE) and Bogoliubov–de
Gennes (BdG) spectrum of collective modes, which are
very powerful in describing the physics of an ultracold
bosonic gas: its ground-state properties as a Bose-Einstein
condensate (BEC), as well as its dynamics [1].
Beyond the great achievements of dilute gases as a test

bed for MF theories, the quest for beyond-MF effects has
triggered great interest in the ultracold community. The

general question of how the many-body ground state of
bosons is modified by quantum fluctuations (QFs) of
elementary excitations was first addressed by Lee,
Huang, and Yang (LHY) in the 1950s [3]. The so-called
LHY term, which accounts for the first-order correction to
the condensate energy, scales for a contact-interacting gas
as asn

ffiffiffiffiffiffiffiffi
na3s

p
. While in the weakly interacting regime the

effect of QFs is negligible and difficult to isolate from MF
contributions, it can be sufficiently amplified by increasing
as via a FR. Based on this concept, recent experiments with
alkali have observed clear shifts of the BdG spectrum and
equation of state caused by the LHY term in strongly
interacting Fermi [4–6] and Bose gases [7,8].
While in these measurements the LHY correction does

not modify the qualitative behavior of the gas, it has been
recently pointed out [9] that, in systems with competing
interactions of different origin, the MF interaction can be
made small and the LHY term dominant, so that the latter
dictates the physics of the system, even inweakly interacting
gases. In this regime, a novel phase of matter is expected to
appear, namely, a liquidlike droplet state. For purely contact-
interacting gases, this situation is hard to realize since it
would require, for instance, Bose-Bose mixtures with
coincidental overlapping FRs [9]. In contrast, dipole-dipole
interaction (DDI) genuinely offers this possibility in a
single-component atomic gas by competing with the iso-
tropic MF contact interaction [10,11]. In the pure MF
picture, a paradigm of the competition between DDI and
contact interaction is embodied by the ability of quenching a
dipolar BEC to collapse by varying εdd ¼ add=as, where
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theoretical studies show good agreement between the
Gaussian ansatz and the full numerical solution for our
parameter range [22,23].
Being a smoking gun for long-range phase coherence,

the survival of a bimodal profile in the TOF distribution far
beyond the MF instability threshold points to a persistent
coherent behavior. This absence of a collapse advocates the
outbreak of an additional stabilization mechanism, which
we now further investigate by probing global properties of
the gas.

IV. COLLECTIVE OSCILLATION

In a second set of experiments, we unveil the origin of
the stabilization mechanism by studying the elementary
excitations of the coherent cloud. This is a very powerful
probe of the fundamental properties in quantum degenerate
gases [1,34]. In particular, collapse is intimately related
to the softening of some collective modes at the MF-
instability threshold. We focus here on the axial mode,
which is the lowest-lying excitation in the system above the
dipole mode. It corresponds to a collective oscillation of the
condensate length along y (R∥) with frequency νaxial.
The axial oscillation comes along with a smaller-amplitude
oscillation of the radial sizes in phase opposition; see
Fig. 3(a). As a result, this mode has a mixed character
between a compression and a surface mode [1]. The
compression character is particularly relevant since it
involves a change in the density and it is therefore sensitive
to the LHY corrections [35].
We excite the axial mode either by ramping B during the

final preparation stage or by transiently increasing the power
of the vertical optical dipole trap beam, after ramping B to
Bf. Here, ν∥ is abruptly changed from 17 Hz to typically
21 Hz, kept at this higher value for 8 ms, and finally set back
to 17 Hz. Following the excitation, we let the cloud evolve
for a variable th and image its TOF density distribution with
⊥ imaging. To extract νaxial, we probe the axial width R∥ of
the central coherent component of the gas [30] with th and fit
it to a damped sine; see inset of Fig. 3(b).
Figure 3 shows the observed νaxial normalized to the

trapping frequency ν∥ [36] as a function of as for adiabatic
[Fig. 3(b)] and nonadiabatic [Fig. 3(c)] ramps. Both cases
exhibit a similar qualitative behavior. For as > add, the
oscillations show a smooth dependence on εdd, with νaxial
increasing by about 5% with an average value of 1.70ν∥
[37]. When lowering as, the oscillation of the coherent part
remains visible well below the εdd ¼ 1 threshold and νaxial
exhibits a marked increase. νaxial=ν∥ grows up to 2.6(1) at
as ¼ 54a0 for tr ¼ 100 ms [Fig. 3(b)]. For tr ¼ 10 ms
[Fig. 3(c)], νaxial=ν∥ first increases similarly to the adiabatic
case [Fig. 3(b)], reaches a maximum of ∼2.13ð7Þ at 57a0
(εdd ¼ 1.15), and finally decreases for even smaller as
(open squares). The latter behavior can be explained by the
fact that the larger quenches in the interaction excites

additional high-energy modes while it drives the system
away from the linear response regime [38]. A similar
behavior is found from our theory predictions including the
LHY term (see below), thus highlighting a qualitative
agreement even in this small-as range.

V. THEORY

To account for our observation and discern between the
MF instability picture and QF mechanisms, we develop a
beyond-MF treatment of our system at T ¼ 0. The coherent
gas is described here by means of the generalized nonlocal
nonlinear-Schrödinger equation (gNLNLSE), which
includes the first-order correction from QF effects, i.e.,
the LHY term, and 3B loss processes. The gNLNLSE
reads as [20,23]

iℏ
∂ψ
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!
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FIG. 3. Axial mode. (a) Illustration of the axial mode in our
experimental setup. The black arrows sketch the oscillations of
the widths of the coherent gas along the characteristic axes of the
trap, with weights indicating their relative amplitudes. (b),
(c) Measured νaxial=ν∥ (squares) as a function of as together
with the theoretical predictions, including (solid line) or not
(dashed lines) the LHY term for tr ¼ 100 ms (b) and tr ¼ 10 ms
(c). Theoretical predictions are obtained from RTE (see text) for
as varied from 50a0 to 95a0. In the MF case, predictions fail for
as ≤ ac (orange area) due to the occurrence of the collapsing
dynamics which rules out the collective excitation picture.
ac ¼ 57a0 [ac ¼ 64a0] in (b) [(c)]. In (c), νaxial cannot be reliably
extracted for quenches to as ≤ 56a0, nor from the experiment
(open squares) or from the LHY theory (open circles, thin line).
The inset in (b) exemplifies a measurement of R∥ (triangles) and
its fit to a damped sine (solid line) for as ¼ 80a0. We typically fit
4–5 oscillations for all our as.
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• Excitations satisfy Bogoliubov-de Gennes equations

Collective excitations of self-bound droplets of a dipolar quantum fluid
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We calculate the collective excitations of a dipolar Bose-Einstein condensate in the regime where it self-binds
into droplets stabilized by quantum fluctuations. We show that the filament-shaped droplets act as a quasi-one-
dimensional waveguide along which low angular momentum phonons propagate. The evaporation (unbinding)
threshold occurring as the atom number N is reduced to the critical value Nc is associated with a monopole-like
excitation going soft as ✏0 ⇠ (N �Nc)

1/4. Considering the system in the presence of a trapping potential, we
quantify the crossover from a trap-bound condensate to a self-bound droplet.

Dipolar condensates consist of atoms with appreciable
magnetic dipole moments that interact with a long-ranged
and anisotropic dipole-dipole interaction (DDI). Recent ex-
periments with dipolar condensates of dysprosium [1–3] and
erbium [4] atoms have observed the formation of self-bound
droplets that can preserve their form, even in the absence of
any external confinement. These droplets occur in the dipole-
dominated regime, where the DDIs dominate over short-
ranged (s-wave) interactions, and for sufficiently many atoms
in the droplet [5, 6]. In the dipole-dominated regime mean-
field theory predicts that the condensate is unstable to col-
lapse, but as collapse begins and the density increases the
(beyond meanfield) quantum fluctuation corrections become
important. These Lee-Huang-Yang (LHY) [7] corrections [8–
10] contribute an energy that can arrest the collapse and stabi-
lize the system as a finite sized droplet [11–13]. Experiments
have produced droplets by ramping a trapped condensate into
the dipole dominated regime leading to a single droplet or
an array of droplets forming, depending on trap geometry
[12–14]. Droplets with atom numbers in the range 10

3–104
have been observed, with peak densities predicted to be an
order of magnitude higher than the initial condensate density
(> 10

21
m

�3). The droplets are still well within the dilute
weakly interacting regime, but three-body recombination be-
comes an important source of atom loss that limits droplet
lifetime. Lifetimes of up to ⇠ 100ms were measured for
free-space droplets [3], with longer times observed for trapped
droplets (e.g. [1]). The anisotropic DDI causes droplets to
elongate along the direction that the dipoles are polarized into
highly anisotropic filaments.

It is desirable to have a comprehensive understanding of
the full excitation spectrum of the droplets. Indeed, in he-
lium nanodroplets [15], which are dense self-bound super-
fluid droplets, the various types of bulk and surface excitations
have been extensively studied for decades (e.g. see [16, 17]).
Already some first steps have been made in dipolar droplets,
with Wächtler et al. using a variational ansatz to characterize
three shape oscillations [6], with their prediction for the fre-
quency of the axial mode comparing favorably to experiments
with erbium [4]. Here we present the results of the first cal-
culations of the full excitation spectrum of a dipolar conden-
sate in the self-binding regime by solving the Bogoliubov-de

Gennes equations. We study the modes bound by the elon-
gated droplet in free-space and the nature of instability as the
droplet number decreases towards the critical number. Also,
by including a trapping potential we quantify the evolution of
the spectrum from a trap-bound condensate into a self-bound
droplet.

Formalism– Several works [2–6, 11–13] have established
that the ground states and dynamics of a dipolar condensate
in the droplet regime is well-described by a generalized non-
local Gross-Pitaevskii equation (GPE). The time-independent
version for the ground state wavefunction  0 has the form
µ 0 = LGP 0, where µ is the chemical potential and

LGP ⌘ �~2r2

2M
+ �(x) + �QF| 0|3. (1)

The effective potential �(x) =
R
dx0 U(x�x

0
)| 0(x

0
)|2 de-

scribes the two-body interactions where

U(r) = gs�(r) +
3gdd
4⇡r3

(1� 3 cos

2 ✓). (2)

Here gs = 4⇡as~2/M is the s-wave coupling constant, as
is the s-wave scattering length, and gdd = 4⇡add~2/M is
the DDI coupling constant, with add = Mµ0µ2/12⇡~2 the
dipole length determined by the magnetic moment µm of the
particles. The DDI term is for dipoles polarized along the
z axis, and ✓ is the angle between r and the z axis. The
leading-order LHY correction to the chemical potential is
�µ = �QFn3/2, which is included in Eq. (1) using the lo-
cal density approximation n ! | 0(x)|2, with coefficient

�QF =

32
3 gs

q
a3
s
⇡ (1 +

3
2✏

2
dd) [8, 13] where ✏dd ⌘ add/as.

The collective excitations of this system are Bogoliubov
quasiparticles, which can be obtained by linearizing the time-
dependent GPE i~ ˙ = LGP about the ground state as
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(e.g. see [18, 19]), where �⌫ is the perturbation amplitude.
The quasiparticle modes u⌫ , v⌫ and energies ✏⌫ satisfy the
Bogoliubov-de Gennes (BdG) equations
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Dipolar condensates consist of atoms with appreciable
magnetic dipole moments that interact with a long-ranged
and anisotropic dipole-dipole interaction (DDI). Recent ex-
periments with dipolar condensates of dysprosium [1–3] and
erbium [4] atoms have observed the formation of self-bound
droplets that can preserve their form, even in the absence of
any external confinement. These droplets occur in the dipole-
dominated regime, where the DDIs dominate over short-
ranged (s-wave) interactions, and for sufficiently many atoms
in the droplet [5, 6]. In the dipole-dominated regime mean-
field theory predicts that the condensate is unstable to col-
lapse, but as collapse begins and the density increases the
(beyond meanfield) quantum fluctuation corrections become
important. These Lee-Huang-Yang (LHY) [7] corrections [8–
10] contribute an energy that can arrest the collapse and stabi-
lize the system as a finite sized droplet [11–13]. Experiments
have produced droplets by ramping a trapped condensate into
the dipole dominated regime leading to a single droplet or
an array of droplets forming, depending on trap geometry
[12–14]. Droplets with atom numbers in the range 10

3–104
have been observed, with peak densities predicted to be an
order of magnitude higher than the initial condensate density
(> 10

21
m

�3). The droplets are still well within the dilute
weakly interacting regime, but three-body recombination be-
comes an important source of atom loss that limits droplet
lifetime. Lifetimes of up to ⇠ 100ms were measured for
free-space droplets [3], with longer times observed for trapped
droplets (e.g. [1]). The anisotropic DDI causes droplets to
elongate along the direction that the dipoles are polarized into
highly anisotropic filaments.

It is desirable to have a comprehensive understanding of
the full excitation spectrum of the droplets. Indeed, in he-
lium nanodroplets [15], which are dense self-bound super-
fluid droplets, the various types of bulk and surface excitations
have been extensively studied for decades (e.g. see [16, 17]).
Already some first steps have been made in dipolar droplets,
with Wächtler et al. using a variational ansatz to characterize
three shape oscillations [6], with their prediction for the fre-
quency of the axial mode comparing favorably to experiments
with erbium [4]. Here we present the results of the first cal-
culations of the full excitation spectrum of a dipolar conden-
sate in the self-binding regime by solving the Bogoliubov-de

Gennes equations. We study the modes bound by the elon-
gated droplet in free-space and the nature of instability as the
droplet number decreases towards the critical number. Also,
by including a trapping potential we quantify the evolution of
the spectrum from a trap-bound condensate into a self-bound
droplet.

Formalism– Several works [2–6, 11–13] have established
that the ground states and dynamics of a dipolar condensate
in the droplet regime is well-described by a generalized non-
local Gross-Pitaevskii equation (GPE). The time-independent
version for the ground state wavefunction  0 has the form
µ 0 = LGP 0, where µ is the chemical potential and
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Here gs = 4⇡as~2/M is the s-wave coupling constant, as
is the s-wave scattering length, and gdd = 4⇡add~2/M is
the DDI coupling constant, with add = Mµ0µ2/12⇡~2 the
dipole length determined by the magnetic moment µm of the
particles. The DDI term is for dipoles polarized along the
z axis, and ✓ is the angle between r and the z axis. The
leading-order LHY correction to the chemical potential is
�µ = �QFn3/2, which is included in Eq. (1) using the lo-
cal density approximation n ! | 0(x)|2, with coefficient
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The collective excitations of this system are Bogoliubov
quasiparticles, which can be obtained by linearizing the time-
dependent GPE i~ ˙ = LGP about the ground state as
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(e.g. see [18, 19]), where �⌫ is the perturbation amplitude.
The quasiparticle modes u⌫ , v⌫ and energies ✏⌫ satisfy the
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Dipolar condensates consist of atoms with appreciable
magnetic dipole moments that interact with a long-ranged
and anisotropic dipole-dipole interaction (DDI). Recent ex-
periments with dipolar condensates of dysprosium [1–3] and
erbium [4] atoms have observed the formation of self-bound
droplets that can preserve their form, even in the absence of
any external confinement. These droplets occur in the dipole-
dominated regime, where the DDIs dominate over short-
ranged (s-wave) interactions, and for sufficiently many atoms
in the droplet [5, 6]. In the dipole-dominated regime mean-
field theory predicts that the condensate is unstable to col-
lapse, but as collapse begins and the density increases the
(beyond meanfield) quantum fluctuation corrections become
important. These Lee-Huang-Yang (LHY) [7] corrections [8–
10] contribute an energy that can arrest the collapse and stabi-
lize the system as a finite sized droplet [11–13]. Experiments
have produced droplets by ramping a trapped condensate into
the dipole dominated regime leading to a single droplet or
an array of droplets forming, depending on trap geometry
[12–14]. Droplets with atom numbers in the range 10

3–104
have been observed, with peak densities predicted to be an
order of magnitude higher than the initial condensate density
(> 10
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�3). The droplets are still well within the dilute
weakly interacting regime, but three-body recombination be-
comes an important source of atom loss that limits droplet
lifetime. Lifetimes of up to ⇠ 100ms were measured for
free-space droplets [3], with longer times observed for trapped
droplets (e.g. [1]). The anisotropic DDI causes droplets to
elongate along the direction that the dipoles are polarized into
highly anisotropic filaments.

It is desirable to have a comprehensive understanding of
the full excitation spectrum of the droplets. Indeed, in he-
lium nanodroplets [15], which are dense self-bound super-
fluid droplets, the various types of bulk and surface excitations
have been extensively studied for decades (e.g. see [16, 17]).
Already some first steps have been made in dipolar droplets,
with Wächtler et al. using a variational ansatz to characterize
three shape oscillations [6], with their prediction for the fre-
quency of the axial mode comparing favorably to experiments
with erbium [4]. Here we present the results of the first cal-
culations of the full excitation spectrum of a dipolar conden-
sate in the self-binding regime by solving the Bogoliubov-de

Gennes equations. We study the modes bound by the elon-
gated droplet in free-space and the nature of instability as the
droplet number decreases towards the critical number. Also,
by including a trapping potential we quantify the evolution of
the spectrum from a trap-bound condensate into a self-bound
droplet.

Formalism– Several works [2–6, 11–13] have established
that the ground states and dynamics of a dipolar condensate
in the droplet regime is well-described by a generalized non-
local Gross-Pitaevskii equation (GPE). The time-independent
version for the ground state wavefunction  0 has the form
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Here gs = 4⇡as~2/M is the s-wave coupling constant, as
is the s-wave scattering length, and gdd = 4⇡add~2/M is
the DDI coupling constant, with add = Mµ0µ2/12⇡~2 the
dipole length determined by the magnetic moment µm of the
particles. The DDI term is for dipoles polarized along the
z axis, and ✓ is the angle between r and the z axis. The
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(e.g. see [18, 19]), where �⌫ is the perturbation amplitude.
The quasiparticle modes u⌫ , v⌫ and energies ✏⌫ satisfy the
Bogoliubov-de Gennes (BdG) equations
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where X is the exchange operator given by

Xf ⌘  0

Z
dx0U(x�x

0
)f(x0

) ⇤
0(x

0
)+

3
2�QF| 0|3f. (5)

We normalize the quasiparticles according to
R
dx(|u⌫ |2 �

|v⌫ |2) = 1. Solving the GPE for  0 and BdG equations for
the excitations has to be done numerically. We utilize the
cylindrically symmetry of the problem (e.g. see [19, 20]) to
solve independently for excitations in different m-subspaces,
where m is the z-projection of angular momentum and em-
ploy a cylindrical cutoff for the DDI [21].
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FIG. 1. (a) Spectrum of a self-bound droplet of 164Dy atoms with
as = 80 a0 in free-space as a function of N . The total droplet energy
E0=

R
dx ⇤

0(� ~2r2

2M + 1
2�+ 2

5�QF| 0|3) 0 (dashed black line) and
�µ (solid black line) are shown. A straight dash-dotted line fit shows
that the lowest energy mode scales as (N �Nc)

1/4 as N approaches
the critical number Nc ⇡ 1899. Excitations are m = 0 (blue), m =
1 (red) and m = 2 (green). Variational solution [with Nc = 2193]
for the lowest mode (magenta). (b) Widths �⇢, �z , and effective
volume �2

⇢�z (solid) as a function of N and the corresponding large
N scaling (dashed). (c) Peak density as a function of N .

Self-bound droplets– A universal phase diagram showing
the conditions where self-bound solutions of the GPE exist
was presented in Fig. 2 of Ref. [5]. This phase diagram only

depends on the parameters ✏dd and N , and shows that in the
dipole dominated regime (✏dd > 1) there always exists a
minimum critical number Nc above which a stable droplet
exists. As ✏dd increases the critical number Nc decreases.
Fig. 1(a) shows the excitation spectrum as N varies for self-
bound droplet of 164Dy with as = 80 a0 (i.e. ✏dd ⇡ 1.63).
For this value of ✏dd the critical atom number is Nc ' 1899.
In solving for the excitations we find that they can be cate-
gorised into two types. (i) Those with ✏⌫ < �µ are bound by
the droplet (noting that quasiparticle energies are relative to
µ, so these excitations have negative energy). (ii) Those with
✏⌫ > �µ are hence unbounded (part of the continuum) and
are sensitive to the details of the finite numerical grid used
in the calculations. We only show the bound excitations in
Fig. 1(a) and indicate �µ for reference. Our results show that
the number of these bound excitations increases with N . As
N is reduced towards Nc (where only a few of excitations re-
main) the lowest m = 0 mode goes soft indicating the onset
of a dynamical instability of the self-bound state. This mode
softens as ✏0 ⇠ (N � Nc)

1/4 [see Fig. 1(a)], similar to the
behaviour predicted at the instability point of attractive con-
densates [22] and droplets in binary condensates [23].

We also observe that the energy of the lowest quasiparti-
cle initially increases as N increases until it reaches a max-
imum at N ⇡ 4 ⇥ 10

3, and then decreases. This mode has
a monopole (compressional) character for N . 4 ⇥ 10

3,
and thus the softening of this mode indicates that the sys-
tem becomes increasingly compressible as N ! Nc. For
N & 4 ⇥ 10

3 this mode instead exhibits a quadrupolar char-
acter, consistent with the system becoming incompressible.
We also show results of a variational Gaussian treatment of
the lowest energy excitation [6, 24] which we find to be a
good description of the lowest mode energy and to predict
the crossover from monopole to quadrupolar character near
the energy maximum of this mode. We note the variational
theory predicts a 15% higher value for Nc.

The crossover from compressible to incompressible behav-
ior as N increases is also revealed directly from condensate
properties. In Figs. 1(b)-(c) we show the peak density npeak,
the widths [25] {�⇢,�z}, and the effective volume �2

⇢�z of
the condensate as N varies. For N . 4 ⇥ 10

3 (compress-
ible regime) the widths and effective volume decrease with
increasing N and the peak density increases. For N & 4⇥10

3

the system behaves like an incompressible liquid with respect
to increasing in N : the peak density npeak remains constant,
and the widths scale so the volume increases linearly with N .

In the incompressible region there are many bound modes
that form a ladder of regularly spaced excitations [see
Fig. 1(a)]. The lowest energy mode, that we discussed above,
is the first of the ladder of m = 0 excitations. At a higher en-
ergy a ladder of m = 1 excitations begins, and so on (higher
m-ladders) until the �µ threshold is crossed. These modes
tend to be confined to the region of space occupied by the con-
densate. Noting that in the incompressible regime the conden-
sate has the shape of a long filament [�z � �⇢, see Fig. 1(b)],
the ladder of modes corresponds to a sequence of harmonics
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along the z-extent of the condensate as shown for the lowest
three modes in Fig. 2(b). We see that the u⌫ and v⌫ quasi-
particle amplitudes are essentially identical within the central
region of the condensate where the density is saturated. The
density fluctuation associated with a quasiparticle is given by
�n⌫ ⇠ (u⌫ � v⌫) 0, and thus vanishes inside the conden-
sate [see Fig. 2(c)], consistent with the incompressible char-
acter of this regime (c.f. [19, 26, 27]). These results also show
these excitations mainly perturbing the density in the surface
region. The “centrifugal potential” for higher m excitations
shifts their ladders to higher energy. However as N increases
the filament width grows as N1/4 [see Fig. 1(b)] and higher
m-ladders are increasingly bound within the droplet.

We can also quantify the character of the bound modes by
assigning a wavevector to each quasiparticle to compute a dis-
crete dispersion relation. We set z⌫ as the first solution of
u⌫(0, z) = 0 for z > 0 and define the wavevector kz = ⇡/2z⌫
(kz = ⇡/z⌫) for even (odd) modes [see Fig. 2(b)]. The results
of this analysis are shown in Fig. 2(a), where the different lad-
ders of m-excitations are clearly seen.

The m = 0 discrete dispersion relation is well described by
the quasi-one-dimensional (quasi-1D) result found by assum-
ing a Gaussian radial profile of the condensate and excitations
with width �⇢

✏(kz)=

s
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where ✏z = ~2k2z/2M and f(q) = 1 + 3q2eq
2

Ei(�q2) is the
quasi-1D DDI [28], with Ei being the exponential integral.
The dispersion relation (6) only requires �⇢ and npeak from
the GPE solution and has no other fitting parameters. There
is no apparent linear (phonon) dispersion for the m = 0 re-
sults in Fig. 2(a). However, the kinetic energy of these modes
is also negligible (the free-particle dispersion ✏z is shown for
reference), and ✏(kz) still accurately fits the m = 0 modes if
we neglect the ✏2z term. Thus interaction effects (including the
LHY term) dominate the energetics of these modes, with the
curvature in the dispersion relation arising from the momen-
tum dependence of the DDI, described by f . The variation
of f with kz is set by the radial width �⇢, and we see that
f changes rapidly over the kz range spanned by the bound
modes [see Fig. 2(a)].

We have calculated spectra for free-space droplets over a
wide parameter regime (as/a0 2 {70, 80, 90, 100} and N 2
{Nc, . . . , 2⇥ 10

5}) and find the general spectrum behavior to
be qualitatively similar to the results of this section.

Transition to self-bound droplets in a trap– Dipolar con-
densates are typically prepared by cooling the atoms through
the condensation transition in an external trap with ✏dd < 1.
In this regime the role of quantum fluctuations is unimpor-
tant and the condensate profile is determined by a balance
between the repulsive two-body interactions and the trapping
potential (i.e. exhibits a Thomas-Fermi density profile [29]).
From this point a Feshbach resonance is used to reduce as
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FIG. 2. (a) Discrete dispersion relation for a self-bound droplet of
N = 105 164Dy atoms with as = 80 a0 in free-space. Also shown
are �µ (solid black line), ✏z (dashed), ✏(kz) from Eq. (6) (dash-
dotted) and f with an arbitrary scale (red line). Excitations (crosses)
are mapped using kz (see text). (b) Lowest three m = 0 quasipar-
ticles umj (solid blue) vmj (dashed blue) modes, and (c) associated
density fluctuations �nmj (see text). The quasiparticle results in (b)
and (c) are vertically offset for clarity, and the condensate amplitude
 0 is shown for reference (black).

(i.e. increase ✏dd) to bring the system into the dipole domi-
nated regime where droplets can form (e.g. see [1–4]). It is
interesting to explore the nature of the excitation spectrum as
the condensate undergoes the transition from being bound by
the trapping potential to being self-bound as a droplet. Trap
geometry can play a significant role in the stability properties
and excitations of a dipolar condensate (e.g. see [19, 20, 30–
32]), however here we focus on the case of a spherically sym-
metric trap where the condensate smoothly crosses over into a
droplet as ✏dd increases. Our solutions for the condensate and
excitations are found using the procedure outlined earlier with
the potential Vtrap =

1
2M!2|x|2 added to LGP.

Our results for a system of 2⇥ 10

4 164Dy atoms are shown
in Fig. 3. For as & 95a0 the condensate is in a low den-
sity trap bound state and has a dense excitation spectrum. As
as decreases below 95a0 the condensate energy rapidly de-
creases into negative values as the droplet self-binds. As this
happens most of the quasiparticle energies start rapidly ris-
ing into a quasi-continuum of excitations that are bound by
the trap but not within the droplet. A few m = 0 modes

density fluctuation
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along the z-extent of the condensate as shown for the lowest
three modes in Fig. 2(b). We see that the u⌫ and v⌫ quasi-
particle amplitudes are essentially identical within the central
region of the condensate where the density is saturated. The
density fluctuation associated with a quasiparticle is given by
�n⌫ ⇠ (u⌫ � v⌫) 0, and thus vanishes inside the conden-
sate [see Fig. 2(c)], consistent with the incompressible char-
acter of this regime (c.f. [19, 26, 27]). These results also show
these excitations mainly perturbing the density in the surface
region. The “centrifugal potential” for higher m excitations
shifts their ladders to higher energy. However as N increases
the filament width grows as N1/4 [see Fig. 1(b)] and higher
m-ladders are increasingly bound within the droplet.

We can also quantify the character of the bound modes by
assigning a wavevector to each quasiparticle to compute a dis-
crete dispersion relation. We set z⌫ as the first solution of
u⌫(0, z) = 0 for z > 0 and define the wavevector kz = ⇡/2z⌫
(kz = ⇡/z⌫) for even (odd) modes [see Fig. 2(b)]. The results
of this analysis are shown in Fig. 2(a), where the different lad-
ders of m-excitations are clearly seen.

The m = 0 discrete dispersion relation is well described by
the quasi-one-dimensional (quasi-1D) result found by assum-
ing a Gaussian radial profile of the condensate and excitations
with width �⇢
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where ✏z = ~2k2z/2M and f(q) = 1 + 3q2eq
2

Ei(�q2) is the
quasi-1D DDI [28], with Ei being the exponential integral.
The dispersion relation (6) only requires �⇢ and npeak from
the GPE solution and has no other fitting parameters. There
is no apparent linear (phonon) dispersion for the m = 0 re-
sults in Fig. 2(a). However, the kinetic energy of these modes
is also negligible (the free-particle dispersion ✏z is shown for
reference), and ✏(kz) still accurately fits the m = 0 modes if
we neglect the ✏2z term. Thus interaction effects (including the
LHY term) dominate the energetics of these modes, with the
curvature in the dispersion relation arising from the momen-
tum dependence of the DDI, described by f . The variation
of f with kz is set by the radial width �⇢, and we see that
f changes rapidly over the kz range spanned by the bound
modes [see Fig. 2(a)].

We have calculated spectra for free-space droplets over a
wide parameter regime (as/a0 2 {70, 80, 90, 100} and N 2
{Nc, . . . , 2⇥ 10

5}) and find the general spectrum behavior to
be qualitatively similar to the results of this section.

Transition to self-bound droplets in a trap– Dipolar con-
densates are typically prepared by cooling the atoms through
the condensation transition in an external trap with ✏dd < 1.
In this regime the role of quantum fluctuations is unimpor-
tant and the condensate profile is determined by a balance
between the repulsive two-body interactions and the trapping
potential (i.e. exhibits a Thomas-Fermi density profile [29]).
From this point a Feshbach resonance is used to reduce as
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FIG. 2. (a) Discrete dispersion relation for a self-bound droplet of
N = 105 164Dy atoms with as = 80 a0 in free-space. Also shown
are �µ (solid black line), ✏z (dashed), ✏(kz) from Eq. (6) (dash-
dotted) and f with an arbitrary scale (red line). Excitations (crosses)
are mapped using kz (see text). (b) Lowest three m = 0 quasipar-
ticles umj (solid blue) vmj (dashed blue) modes, and (c) associated
density fluctuations �nmj (see text). The quasiparticle results in (b)
and (c) are vertically offset for clarity, and the condensate amplitude
 0 is shown for reference (black).

(i.e. increase ✏dd) to bring the system into the dipole domi-
nated regime where droplets can form (e.g. see [1–4]). It is
interesting to explore the nature of the excitation spectrum as
the condensate undergoes the transition from being bound by
the trapping potential to being self-bound as a droplet. Trap
geometry can play a significant role in the stability properties
and excitations of a dipolar condensate (e.g. see [19, 20, 30–
32]), however here we focus on the case of a spherically sym-
metric trap where the condensate smoothly crosses over into a
droplet as ✏dd increases. Our solutions for the condensate and
excitations are found using the procedure outlined earlier with
the potential Vtrap =

1
2M!2|x|2 added to LGP.

Our results for a system of 2⇥ 10

4 164Dy atoms are shown
in Fig. 3. For as & 95a0 the condensate is in a low den-
sity trap bound state and has a dense excitation spectrum. As
as decreases below 95a0 the condensate energy rapidly de-
creases into negative values as the droplet self-binds. As this
happens most of the quasiparticle energies start rapidly ris-
ing into a quasi-continuum of excitations that are bound by
the trap but not within the droplet. A few m = 0 modes
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along the z-extent of the condensate as shown for the lowest
three modes in Fig. 2(b). We see that the u⌫ and v⌫ quasi-
particle amplitudes are essentially identical within the central
region of the condensate where the density is saturated. The
density fluctuation associated with a quasiparticle is given by
�n⌫ ⇠ (u⌫ � v⌫) 0, and thus vanishes inside the conden-
sate [see Fig. 2(c)], consistent with the incompressible char-
acter of this regime (c.f. [19, 26, 27]). These results also show
these excitations mainly perturbing the density in the surface
region. The “centrifugal potential” for higher m excitations
shifts their ladders to higher energy. However as N increases
the filament width grows as N1/4 [see Fig. 1(b)] and higher
m-ladders are increasingly bound within the droplet.

We can also quantify the character of the bound modes by
assigning a wavevector to each quasiparticle to compute a dis-
crete dispersion relation. We set z⌫ as the first solution of
u⌫(0, z) = 0 for z > 0 and define the wavevector kz = ⇡/2z⌫
(kz = ⇡/z⌫) for even (odd) modes [see Fig. 2(b)]. The results
of this analysis are shown in Fig. 2(a), where the different lad-
ders of m-excitations are clearly seen.

The m = 0 discrete dispersion relation is well described by
the quasi-one-dimensional (quasi-1D) result found by assum-
ing a Gaussian radial profile of the condensate and excitations
with width �⇢
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where ✏z = ~2k2z/2M and f(q) = 1 + 3q2eq
2

Ei(�q2) is the
quasi-1D DDI [28], with Ei being the exponential integral.
The dispersion relation (6) only requires �⇢ and npeak from
the GPE solution and has no other fitting parameters. There
is no apparent linear (phonon) dispersion for the m = 0 re-
sults in Fig. 2(a). However, the kinetic energy of these modes
is also negligible (the free-particle dispersion ✏z is shown for
reference), and ✏(kz) still accurately fits the m = 0 modes if
we neglect the ✏2z term. Thus interaction effects (including the
LHY term) dominate the energetics of these modes, with the
curvature in the dispersion relation arising from the momen-
tum dependence of the DDI, described by f . The variation
of f with kz is set by the radial width �⇢, and we see that
f changes rapidly over the kz range spanned by the bound
modes [see Fig. 2(a)].

We have calculated spectra for free-space droplets over a
wide parameter regime (as/a0 2 {70, 80, 90, 100} and N 2
{Nc, . . . , 2⇥ 10

5}) and find the general spectrum behavior to
be qualitatively similar to the results of this section.

Transition to self-bound droplets in a trap– Dipolar con-
densates are typically prepared by cooling the atoms through
the condensation transition in an external trap with ✏dd < 1.
In this regime the role of quantum fluctuations is unimpor-
tant and the condensate profile is determined by a balance
between the repulsive two-body interactions and the trapping
potential (i.e. exhibits a Thomas-Fermi density profile [29]).
From this point a Feshbach resonance is used to reduce as
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FIG. 2. (a) Discrete dispersion relation for a self-bound droplet of
N = 105 164Dy atoms with as = 80 a0 in free-space. Also shown
are �µ (solid black line), ✏z (dashed), ✏(kz) from Eq. (6) (dash-
dotted) and f with an arbitrary scale (red line). Excitations (crosses)
are mapped using kz (see text). (b) Lowest three m = 0 quasipar-
ticles umj (solid blue) vmj (dashed blue) modes, and (c) associated
density fluctuations �nmj (see text). The quasiparticle results in (b)
and (c) are vertically offset for clarity, and the condensate amplitude
 0 is shown for reference (black).

(i.e. increase ✏dd) to bring the system into the dipole domi-
nated regime where droplets can form (e.g. see [1–4]). It is
interesting to explore the nature of the excitation spectrum as
the condensate undergoes the transition from being bound by
the trapping potential to being self-bound as a droplet. Trap
geometry can play a significant role in the stability properties
and excitations of a dipolar condensate (e.g. see [19, 20, 30–
32]), however here we focus on the case of a spherically sym-
metric trap where the condensate smoothly crosses over into a
droplet as ✏dd increases. Our solutions for the condensate and
excitations are found using the procedure outlined earlier with
the potential Vtrap =

1
2M!2|x|2 added to LGP.

Our results for a system of 2⇥ 10

4 164Dy atoms are shown
in Fig. 3. For as & 95a0 the condensate is in a low den-
sity trap bound state and has a dense excitation spectrum. As
as decreases below 95a0 the condensate energy rapidly de-
creases into negative values as the droplet self-binds. As this
happens most of the quasiparticle energies start rapidly ris-
ing into a quasi-continuum of excitations that are bound by
the trap but not within the droplet. A few m = 0 modes

Dispersion mapping

3

along the z-extent of the condensate as shown for the lowest
three modes in Fig. 2(b). We see that the u⌫ and v⌫ quasi-
particle amplitudes are essentially identical within the central
region of the condensate where the density is saturated. The
density fluctuation associated with a quasiparticle is given by
�n⌫ ⇠ (u⌫ � v⌫) 0, and thus vanishes inside the conden-
sate [see Fig. 2(c)], consistent with the incompressible char-
acter of this regime (c.f. [19, 26, 27]). These results also show
these excitations mainly perturbing the density in the surface
region. The “centrifugal potential” for higher m excitations
shifts their ladders to higher energy. However as N increases
the filament width grows as N1/4 [see Fig. 1(b)] and higher
m-ladders are increasingly bound within the droplet.

We can also quantify the character of the bound modes by
assigning a wavevector to each quasiparticle to compute a dis-
crete dispersion relation. We set z⌫ as the first solution of
u⌫(0, z) = 0 for z > 0 and define the wavevector kz = ⇡/2z⌫
(kz = ⇡/z⌫) for even (odd) modes [see Fig. 2(b)]. The results
of this analysis are shown in Fig. 2(a), where the different lad-
ders of m-excitations are clearly seen.

The m = 0 discrete dispersion relation is well described by
the quasi-one-dimensional (quasi-1D) result found by assum-
ing a Gaussian radial profile of the condensate and excitations
with width �⇢
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where ✏z = ~2k2z/2M and f(q) = 1 + 3q2eq
2

Ei(�q2) is the
quasi-1D DDI [28], with Ei being the exponential integral.
The dispersion relation (6) only requires �⇢ and npeak from
the GPE solution and has no other fitting parameters. There
is no apparent linear (phonon) dispersion for the m = 0 re-
sults in Fig. 2(a). However, the kinetic energy of these modes
is also negligible (the free-particle dispersion ✏z is shown for
reference), and ✏(kz) still accurately fits the m = 0 modes if
we neglect the ✏2z term. Thus interaction effects (including the
LHY term) dominate the energetics of these modes, with the
curvature in the dispersion relation arising from the momen-
tum dependence of the DDI, described by f . The variation
of f with kz is set by the radial width �⇢, and we see that
f changes rapidly over the kz range spanned by the bound
modes [see Fig. 2(a)].

We have calculated spectra for free-space droplets over a
wide parameter regime (as/a0 2 {70, 80, 90, 100} and N 2
{Nc, . . . , 2⇥ 10

5}) and find the general spectrum behavior to
be qualitatively similar to the results of this section.

Transition to self-bound droplets in a trap– Dipolar con-
densates are typically prepared by cooling the atoms through
the condensation transition in an external trap with ✏dd < 1.
In this regime the role of quantum fluctuations is unimpor-
tant and the condensate profile is determined by a balance
between the repulsive two-body interactions and the trapping
potential (i.e. exhibits a Thomas-Fermi density profile [29]).
From this point a Feshbach resonance is used to reduce as
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FIG. 2. (a) Discrete dispersion relation for a self-bound droplet of
N = 105 164Dy atoms with as = 80 a0 in free-space. Also shown
are �µ (solid black line), ✏z (dashed), ✏(kz) from Eq. (6) (dash-
dotted) and f with an arbitrary scale (red line). Excitations (crosses)
are mapped using kz (see text). (b) Lowest three m = 0 quasipar-
ticles umj (solid blue) vmj (dashed blue) modes, and (c) associated
density fluctuations �nmj (see text). The quasiparticle results in (b)
and (c) are vertically offset for clarity, and the condensate amplitude
 0 is shown for reference (black).

(i.e. increase ✏dd) to bring the system into the dipole domi-
nated regime where droplets can form (e.g. see [1–4]). It is
interesting to explore the nature of the excitation spectrum as
the condensate undergoes the transition from being bound by
the trapping potential to being self-bound as a droplet. Trap
geometry can play a significant role in the stability properties
and excitations of a dipolar condensate (e.g. see [19, 20, 30–
32]), however here we focus on the case of a spherically sym-
metric trap where the condensate smoothly crosses over into a
droplet as ✏dd increases. Our solutions for the condensate and
excitations are found using the procedure outlined earlier with
the potential Vtrap =

1
2M!2|x|2 added to LGP.

Our results for a system of 2⇥ 10

4 164Dy atoms are shown
in Fig. 3. For as & 95a0 the condensate is in a low den-
sity trap bound state and has a dense excitation spectrum. As
as decreases below 95a0 the condensate energy rapidly de-
creases into negative values as the droplet self-binds. As this
happens most of the quasiparticle energies start rapidly ris-
ing into a quasi-continuum of excitations that are bound by
the trap but not within the droplet. A few m = 0 modes

Analytic result

3

along the z-extent of the condensate as shown for the lowest
three modes in Fig. 2(b). We see that the u⌫ and v⌫ quasi-
particle amplitudes are essentially identical within the central
region of the condensate where the density is saturated. The
density fluctuation associated with a quasiparticle is given by
�n⌫ ⇠ (u⌫ � v⌫) 0, and thus vanishes inside the conden-
sate [see Fig. 2(c)], consistent with the incompressible char-
acter of this regime (c.f. [19, 26, 27]). These results also show
these excitations mainly perturbing the density in the surface
region. The “centrifugal potential” for higher m excitations
shifts their ladders to higher energy. However as N increases
the filament width grows as N1/4 [see Fig. 1(b)] and higher
m-ladders are increasingly bound within the droplet.

We can also quantify the character of the bound modes by
assigning a wavevector to each quasiparticle to compute a dis-
crete dispersion relation. We set z⌫ as the first solution of
u⌫(0, z) = 0 for z > 0 and define the wavevector kz = ⇡/2z⌫
(kz = ⇡/z⌫) for even (odd) modes [see Fig. 2(b)]. The results
of this analysis are shown in Fig. 2(a), where the different lad-
ders of m-excitations are clearly seen.

The m = 0 discrete dispersion relation is well described by
the quasi-one-dimensional (quasi-1D) result found by assum-
ing a Gaussian radial profile of the condensate and excitations
with width �⇢
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where ✏z = ~2k2z/2M and f(q) = 1 + 3q2eq
2

Ei(�q2) is the
quasi-1D DDI [28], with Ei being the exponential integral.
The dispersion relation (6) only requires �⇢ and npeak from
the GPE solution and has no other fitting parameters. There
is no apparent linear (phonon) dispersion for the m = 0 re-
sults in Fig. 2(a). However, the kinetic energy of these modes
is also negligible (the free-particle dispersion ✏z is shown for
reference), and ✏(kz) still accurately fits the m = 0 modes if
we neglect the ✏2z term. Thus interaction effects (including the
LHY term) dominate the energetics of these modes, with the
curvature in the dispersion relation arising from the momen-
tum dependence of the DDI, described by f . The variation
of f with kz is set by the radial width �⇢, and we see that
f changes rapidly over the kz range spanned by the bound
modes [see Fig. 2(a)].

We have calculated spectra for free-space droplets over a
wide parameter regime (as/a0 2 {70, 80, 90, 100} and N 2
{Nc, . . . , 2⇥ 10

5}) and find the general spectrum behavior to
be qualitatively similar to the results of this section.

Transition to self-bound droplets in a trap– Dipolar con-
densates are typically prepared by cooling the atoms through
the condensation transition in an external trap with ✏dd < 1.
In this regime the role of quantum fluctuations is unimpor-
tant and the condensate profile is determined by a balance
between the repulsive two-body interactions and the trapping
potential (i.e. exhibits a Thomas-Fermi density profile [29]).
From this point a Feshbach resonance is used to reduce as
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FIG. 2. (a) Discrete dispersion relation for a self-bound droplet of
N = 105 164Dy atoms with as = 80 a0 in free-space. Also shown
are �µ (solid black line), ✏z (dashed), ✏(kz) from Eq. (6) (dash-
dotted) and f with an arbitrary scale (red line). Excitations (crosses)
are mapped using kz (see text). (b) Lowest three m = 0 quasipar-
ticles umj (solid blue) vmj (dashed blue) modes, and (c) associated
density fluctuations �nmj (see text). The quasiparticle results in (b)
and (c) are vertically offset for clarity, and the condensate amplitude
 0 is shown for reference (black).

(i.e. increase ✏dd) to bring the system into the dipole domi-
nated regime where droplets can form (e.g. see [1–4]). It is
interesting to explore the nature of the excitation spectrum as
the condensate undergoes the transition from being bound by
the trapping potential to being self-bound as a droplet. Trap
geometry can play a significant role in the stability properties
and excitations of a dipolar condensate (e.g. see [19, 20, 30–
32]), however here we focus on the case of a spherically sym-
metric trap where the condensate smoothly crosses over into a
droplet as ✏dd increases. Our solutions for the condensate and
excitations are found using the procedure outlined earlier with
the potential Vtrap =

1
2M!2|x|2 added to LGP.

Our results for a system of 2⇥ 10

4 164Dy atoms are shown
in Fig. 3. For as & 95a0 the condensate is in a low den-
sity trap bound state and has a dense excitation spectrum. As
as decreases below 95a0 the condensate energy rapidly de-
creases into negative values as the droplet self-binds. As this
happens most of the quasiparticle energies start rapidly ris-
ing into a quasi-continuum of excitations that are bound by
the trap but not within the droplet. A few m = 0 modes

3

along the z-extent of the condensate as shown for the lowest
three modes in Fig. 2(b). We see that the u⌫ and v⌫ quasi-
particle amplitudes are essentially identical within the central
region of the condensate where the density is saturated. The
density fluctuation associated with a quasiparticle is given by
�n⌫ ⇠ (u⌫ � v⌫) 0, and thus vanishes inside the conden-
sate [see Fig. 2(c)], consistent with the incompressible char-
acter of this regime (c.f. [19, 26, 27]). These results also show
these excitations mainly perturbing the density in the surface
region. The “centrifugal potential” for higher m excitations
shifts their ladders to higher energy. However as N increases
the filament width grows as N1/4 [see Fig. 1(b)] and higher
m-ladders are increasingly bound within the droplet.

We can also quantify the character of the bound modes by
assigning a wavevector to each quasiparticle to compute a dis-
crete dispersion relation. We set z⌫ as the first solution of
u⌫(0, z) = 0 for z > 0 and define the wavevector kz = ⇡/2z⌫
(kz = ⇡/z⌫) for even (odd) modes [see Fig. 2(b)]. The results
of this analysis are shown in Fig. 2(a), where the different lad-
ders of m-excitations are clearly seen.

The m = 0 discrete dispersion relation is well described by
the quasi-one-dimensional (quasi-1D) result found by assum-
ing a Gaussian radial profile of the condensate and excitations
with width �⇢
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where ✏z = ~2k2z/2M and f(q) = 1 + 3q2eq
2

Ei(�q2) is the
quasi-1D DDI [28], with Ei being the exponential integral.
The dispersion relation (6) only requires �⇢ and npeak from
the GPE solution and has no other fitting parameters. There
is no apparent linear (phonon) dispersion for the m = 0 re-
sults in Fig. 2(a). However, the kinetic energy of these modes
is also negligible (the free-particle dispersion ✏z is shown for
reference), and ✏(kz) still accurately fits the m = 0 modes if
we neglect the ✏2z term. Thus interaction effects (including the
LHY term) dominate the energetics of these modes, with the
curvature in the dispersion relation arising from the momen-
tum dependence of the DDI, described by f . The variation
of f with kz is set by the radial width �⇢, and we see that
f changes rapidly over the kz range spanned by the bound
modes [see Fig. 2(a)].

We have calculated spectra for free-space droplets over a
wide parameter regime (as/a0 2 {70, 80, 90, 100} and N 2
{Nc, . . . , 2⇥ 10

5}) and find the general spectrum behavior to
be qualitatively similar to the results of this section.

Transition to self-bound droplets in a trap– Dipolar con-
densates are typically prepared by cooling the atoms through
the condensation transition in an external trap with ✏dd < 1.
In this regime the role of quantum fluctuations is unimpor-
tant and the condensate profile is determined by a balance
between the repulsive two-body interactions and the trapping
potential (i.e. exhibits a Thomas-Fermi density profile [29]).
From this point a Feshbach resonance is used to reduce as
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FIG. 2. (a) Discrete dispersion relation for a self-bound droplet of
N = 105 164Dy atoms with as = 80 a0 in free-space. Also shown
are �µ (solid black line), ✏z (dashed), ✏(kz) from Eq. (6) (dash-
dotted) and f with an arbitrary scale (red line). Excitations (crosses)
are mapped using kz (see text). (b) Lowest three m = 0 quasipar-
ticles umj (solid blue) vmj (dashed blue) modes, and (c) associated
density fluctuations �nmj (see text). The quasiparticle results in (b)
and (c) are vertically offset for clarity, and the condensate amplitude
 0 is shown for reference (black).

(i.e. increase ✏dd) to bring the system into the dipole domi-
nated regime where droplets can form (e.g. see [1–4]). It is
interesting to explore the nature of the excitation spectrum as
the condensate undergoes the transition from being bound by
the trapping potential to being self-bound as a droplet. Trap
geometry can play a significant role in the stability properties
and excitations of a dipolar condensate (e.g. see [19, 20, 30–
32]), however here we focus on the case of a spherically sym-
metric trap where the condensate smoothly crosses over into a
droplet as ✏dd increases. Our solutions for the condensate and
excitations are found using the procedure outlined earlier with
the potential Vtrap =

1
2M!2|x|2 added to LGP.

Our results for a system of 2⇥ 10

4 164Dy atoms are shown
in Fig. 3. For as & 95a0 the condensate is in a low den-
sity trap bound state and has a dense excitation spectrum. As
as decreases below 95a0 the condensate energy rapidly de-
creases into negative values as the droplet self-binds. As this
happens most of the quasiparticle energies start rapidly ris-
ing into a quasi-continuum of excitations that are bound by
the trap but not within the droplet. A few m = 0 modes

164Dy atoms with a

s

= 80 a0 (✏dd = 1.6), N
c

= 1899
Assuming Gaussian radial profile of the
condensate and excitations with width �

⇢

�µ

u

j

v

j

i.e. ✏
j

� µ < 0 N & 4⇥ 103

�

⌫

is 1/e-half width of density.

E

V

=
1

2
g

s

n

2



1 +
128

15
p
⇡

p

na

3
s

�

,(1)

µ =
@E

@N

= g

s

n



1 +
32

3
p
⇡

p

na

3
s

�

,(2)

�

⇢

⇠ N

1/4

�

z

⇠ N

1/2

e↵ective volume �2
⇢

�

z

⇠ N

na

3
s

⌧ 1

na

3
s

⇠ 10�5 � 10�4

na

3
s

⇠ 1

�µLHY

✏dd ⇠ 1

✏dd > 1

✏dd < 1

n

3/2 ! | |3

✏dd ⇡ 1.6

�ELHY = V

64

15
g

s

r

a

3
s

⇡

✓

1 +
3

2
✏

2
dd

◆

n

5/2

g

s

=
4⇡s

a

~2
m

1



Properties of a dipolar condensate with three-body interactions

P. B. Blakie1

1Department of Physics, Centre for Quantum Science,
and Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin, New Zealand

We obtain the phase diagram for a harmonically trapped dilute dipolar condensate with a short ranged con-
servative three-body interaction. We show that this system supports two distinct fluid states: a usual condensate
state and a self-cohering droplet state. We develop a simple model to quantify the energetics of these states,
which we verify with full numerical calculations. Based on our simple model we develop a phase diagram
showing that there is a first order phase transition between the states. Using dynamical simulations we explore
the phase transition dynamics, revealing that the droplet crystal observed in previous work is an excited state
that arises from heating as the system crosses the phase transition. Utilising our phase diagram we show it is
feasible to produce a single droplet by dynamically adjusting the confining potential.

PACS numbers: 67.85.Hj, 67.80.K-

I. INTRODUCTION

Quantum gases with significant dipole moments are an in-
teresting playground for exploring the role of long-ranged in-
teractions on superfluidity and spontaneous crystallization in a
quantum fluid [1–6]. In the regime of dominant dipole-dipole
interactions (DDIs), where crystallization might be expected
to occur, dilute gases are fragile to local mechanical collapse
[3, 7–11]. In order to stabilize this system an effective interac-
tion is required that can balance the tendency of the dominant
DDI to collapse the system towards infinite density spikes. A
repulsive short-ranged three-body interaction (TBI) [12–15]
meets these requirements: it produces an energy contribu-
tion that increases with n3, where n is the number density,
and thus dominates over the two-body DDI as the density in-
creases. A theoretical proposal has shown how to produce a
repulsive TBI in a dilute gas of polar molecules [16]. It is also
expected that significant TBIs could emerge in the vicinity
of Feshbach resonances used to modify the s-wave scattering
length [12, 13]. Indeed, some evidence for such interactions
has been presented in experiments with 85Rb [17].

In this paper we consider the ground state properties of a
dilute gas of dipolar atoms with an appreciable TBI. We show
that this system has low-density and high-density ground
states. The low density states are typical condensate states,
with properties largely determined by the two-body interac-
tions (DDI and the s-wave contact interaction) and the external
confining potential. The high-density state, which can occur
when the DDI dominates over the two-body contact interac-
tion, is a self-cohering droplet in which the attractive DDI is
balanced by the repulsive TBI. These states are self-cohering
in the sense that they are stable even when the confinement
in the plane transverse to the orientation of the dipole mo-
ments is removed. Previously, such self-cohering droplets (or
quasi-two-dimensional bright solitons) have been predicted
for dipolar condensates with negatively turned dipoles [18].
We show that the transition between the low- and high-density
states occurs in oblately confined traps via a first order phase
transition. We also show that depending on how that transi-
tion is crossed, either a crystal of droplets or a single droplet
can be produced, as shown in Fig. 1.

FIG. 1. (Color online) Examples of (a) a crystal of droplets and (b)
a single self-cohering droplet that can be produced when a dilute
dipolar gas with three-body interactions is taken through different
paths into the droplet phase. Red surface indicates a high-density
isosurface at n = 2⇥ 1020 m�3 and the light-blue surface indicates
a low-density isosurface at n = 0.2 ⇥ 1020 m�3. Parameters and
these results are discussed further in Fig. 5.

This work is also motivated by a recent experiment with
164Dy that observed the formation of a droplet crystal. A full
understanding of the key physics behind this observation has
yet to be developed. Two groups have simulated the forma-
tion dynamics by augmenting the standard meanfield descrip-
tion of this system with a TBI [19, 20]. Other recent work
[21, 22] has presented evidence that quantum fluctuations ef-
fects are important in stabilizing the droplets. The detailed
microscopic understanding of both proposed mechanisms is
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states. The low density states are typical condensate states,
with properties largely determined by the two-body interac-
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confining potential. The high-density state, which can occur
when the DDI dominates over the two-body contact interac-
tion, is a self-cohering droplet in which the attractive DDI is
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in the sense that they are stable even when the confinement
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ments is removed. Previously, such self-cohering droplets (or
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for dipolar condensates with negatively turned dipoles [18].
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states occurs in oblately confined traps via a first order phase
transition. We also show that depending on how that transi-
tion is crossed, either a crystal of droplets or a single droplet
can be produced, as shown in Fig. 1.

FIG. 1. (Color online) Examples of (a) a crystal of droplets and (b)
a single self-cohering droplet that can be produced when a dilute
dipolar gas with three-body interactions is taken through different
paths into the droplet phase. Red surface indicates a high-density
isosurface at n = 2⇥ 1020 m�3 and the light-blue surface indicates
a low-density isosurface at n = 0.2 ⇥ 1020 m�3. Parameters and
these results are discussed further in Fig. 5.

This work is also motivated by a recent experiment with
164Dy that observed the formation of a droplet crystal. A full
understanding of the key physics behind this observation has
yet to be developed. Two groups have simulated the forma-
tion dynamics by augmenting the standard meanfield descrip-
tion of this system with a TBI [19, 20]. Other recent work
[21, 22] has presented evidence that quantum fluctuations ef-
fects are important in stabilizing the droplets. The detailed
microscopic understanding of both proposed mechanisms is

Summary

• The LHY corrections stabilise a new droplet phase 
in dipolar condensates 

• Stable self-bound droplets in absence of trapping 
potentials 

• Liquid-like incompressible behaviour and droplets 
act as a waveguide for the phonon excitations


