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Central problem of the proposed research:    
Delocalized but not ergodic systems

Boltzmann:

Ergodicity means that time-average is equivalent to the 
space-average

Time-average is equivalent to the energy-shell-average

Quantum: spectrum-average is equivalent to the space-
average



Localization and Ergodicity – one particle,       
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3D Anderson transition

Disorder, W

Ergodic Non-ergodic

Disorder, W



Anderson transition in terms of level statistics 
3D 

P(s)



Multifractality
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Multifractality
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Exponentially localized states:   0q q  
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Fractal dimensions 
differ from 0 and 1
They depend on q



Spectrum of 
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Properties 
of  f 

• .
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f for a d-dimensional lattice
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Bethe Lattice

Cayley tree
not good for numeric:
most of the sites are 
on the boundary

Random Regular Graph
with a fixed connectivity K+1
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Q:
Can extended eigenstates of the 
Anderson model on the Bethe-Lattice be 
non-ergodic outside the critical region ?

A: YES
Localized states –
triangular shape of

Extended states –
gradually approach 
the ergodic limit, 
but reach it only 
at 

 f 

0W 



Extended – non-ergodic  regime, W<17,5:



Extended – non-ergodic  regime, W<Wc=17,5:

The spectrum of the fractal dimensions        is 

gradually evolving with the strength of disorder W , 

but does not collapse to the ergodic limit, which is

( )f 

( 1)f    (1) 1f 

It is unlikely that this is a finite size effect:

1) Two fixed points

2) This is not a critical behavior:              depends 

on both N and W. 

( , , )f N W



Q:
Can extended eigenstates of the 
Anderson model on the Bethe-Lattice be 
non-ergodic outside the critical region ?

A: YES
Localized states –
triangular shape of

Extended states –
gradually approach 
the ergodic limit.

When do they 
reach it reach it 
Only at 

 f 

0W  ?



Localization at the Edge 

of 2D Topological Insulator 

by Kondo Impurities



2D Topological Insulator
Kane and Mele (2005);
Bernevig, T. L. Hughes, and S. C. Zhang (2006)    CdTe-HgTe-CdTe

In the balk (inside the plane) – gap in the 
spectrum of charge excitations     insulator

At the edge excitations are gapless    1D metal 

Insensitive to any static disorder – topological 
protection.  



2D Topological Insulator
Kane and Mele (2005);
Bernevig, T. L. Hughes, and S. C. Zhang (2006)    CdTe-HgTe-CdTe

 ˆ
x F x zH k v k 

Hamiltonian of the 
chiral states at 
the helical edge 

momentum Z-component 
of the spin

Fermi 
velocity

Note: need strong spin-orbital interaction



Rashba term:
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2D Topological Insulator
Kane and Mele (2005);
Bernevig, T. L. Hughes, and S. C. Zhang (2006)    CdTe-HgTe-CdTe

 ˆ
x F x zH k v k 

Hamiltonian of the chiral edge states

momentum Z-component 
of the spin

Fermi 
velocity

E

xk

Chiral edge states:
Left and Right movers



Localization length ~ mean free path

Mott and Twose (1961):  

Consequence:  a zero DC conductivity

Why all this is not directly applicable to 1D helical 
edge electrons? 

M. E. Gertsenstein and V. B. Vasiliev, “Wave guides 

with random inhomogeneities and Brownian motion in 

the Lobachevsky plane”, Theory of Probability & Its 

Applications, 1959, Vol. 4, No. 4 : pp. 391-398

Exact 
Solution!

Even a “weak” disorder 
is not weak in d=1 !

1d localization



Backscattering would mix 
the chiral states and 
thus destroy chirality.

One needs spin-flip for 
the backscattering. 

Kramers degeneracy: one 
needs to violate the 
time-reversal symmetry
to mix left and right 
movers

E

xk

Chiral edge states:
Left and Right movers

E

xk



Basic properties of a generic 2D Topological Insulator:
(strong spin-orbit coupling)

2D bulk  = insulator: electron spectrum is gapped, 
levels of impurities are localized

Edge Modes are Helical

Statement:
Time Reversal Symmetry protects Helical Edge 
Modes  from Backscattering and thus from 
localization by a potential disorder



Quantum Hall Effect

Topological Insulator



Quantum Hall Effect: 

Topological Insulator: the back moving state is nearby 
but

the back-scattering can not 
happen without a spin flip

spatially separated edge 
states - nowhere to scatter



Localization at the edge

Topological Insulator: metallic edge



Time Reversal Symmetry protects Helical Edge Modes  
from Backscattering and Anderson Localization

h

e
Gideal

22
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Conductance of an ideal 1D helical edge should be: 



Experimental Observations
 Large samples show large 

resistance at the gap.

 Small samples (~1X1m) show 
quantized conductance at the 
gap, indicating transport by edge 
states.

 g: 20-50

Molenkamp’s group

d (nm) L×W (μm2)

I 5.5 20.0×13.3

II 7.3 20.0×13.3

III 7.3 1.0×1.0

IV 7.3 1.0×0.5



Problems with the interpretation:

• Why the “quantization” of the conductance 
takes place only in short samples? 

d (nm) L×W (μm2)

I 5.5 20.0×13.3

II 7.3 20.0×13.3

III 7.3 1.0×1.0

IV 7.3 1.0×0.5

NO

NO

YES

Molenkamp et al.

YES ?



Time Reversal Symmetry protects Helical Edge Modes  
from Backscattering and Anderson Localization

h

e
Gideal

22
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In reality, conductance of only extremely small 
fraction of short samples is somewhat close to            

, while for most of the short samples and all 
of the long samples      

idealG

idealGG 

Conductance of an ideal 1D helical edge should be: 



Problems with the interpretation:

• Why the “quantization” of the conductance 
takes place only in short samples? 

d (nm) L×W (μm2)

I 5.5 20.0×13.3

II 7.3 20.0×13.3

III 7.3 1.0×1.0

IV 7.3 1.0×0.5

NO

NO

YES

YES

Magic of the log scale



Problems with the interpretation:

• Why the “quantization” of the conductance 
takes place only in short samples? 

• Why the accuracy of the quantization is 
so poor? Impressive only in the log scale

reproducible

Yacoby group
Harvard

The same sample ! 

Molenkamp group



Questions:

• How universal is the protection?

• Can the “topological protection” 
be softened?

• Can helical edge electrons be 
localized?

• Role of many-body effects? 



Time Reversal 
Symmetry can be 
trivially broken 
by an External
Magnetic Field 

k

)(kE

What about intrinsic sources of the 
Time Reversal Symmetry Violation

Spatially homogeneous field – no effect!
Modulated                     field –> energy gap
Homogeneous field + potential disorder = backscattering! 

~ cos(2 )kx

B

Q: ?



Origin: 1. Chemistry: dangling bonds, etc.
2.  Localized energy levels close to the edge

Formation of the Kondo Spins

In the presence of disorder the 
“edge” is not single connected.



or

Hubbard 
repulsion

Formation of the Kondo Spins

No e-e 
interactions:
Only empty or 
double occupied 
localized states

Single occupied 
states     spins



Localized Spins in the presence of itinerant electrons = Kondo Spins

Chemical 
potential

Ec

E
0
-E

1
E

2
-E

1

Origin: 1. Chemistry: dangling bonds, etc.
2.  Localized energy levels close to the edge



E=0

Ec – energy of the repulsion

Ec >m
E0 > E1 

E2 > E1 
{

or

Anderson Model Kondo Model

Onsite Hubbard repulsion – Anderson Model
4 states of each localized level. Different energies



Interaction between the itinerant electrons and the Kondo Spins

or
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Kondo Effect – Screening of the localized spins



Magnetic (spin) impurity near the helical edge  

Electron-spin 
interaction:


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  

     

  
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electron spin

No influence on the T = 0 dc charge transport

Reasons:

single electron 
impurity

S
impurity spin

U(1)-symmetry: symmetry under rotation around z-axis in the 
spin space = conservation of the z-component of the total spin



U(1) - symmetric (xy-isotropic) electron-spin 
interaction has no influence on T=0 dc transport

Spin down impurity can back-scatter a right-moving 
electron. 

However, subsequent backscattering of right-moving 
electrons is impossible until some left-moving electron 
reverse the impurity spin!

The impurities can effect ac conductivity but not dc one!
Reason: conservation of

1. Kinematic reason (Tanaka, Furusaki, Matveev (2011)) 

Sz



Second reason:
Kondo effect - screening of the impurity spin   

Recovery of the Time Reversal Symmetry

2 2

i ie e 

  
Kondo exchange

U(1) - symmetric (xy-isotropic) electron-spin 
interaction has no influence on zero-temperature 
dc charge transport

Does not depend on the U(1)-symmetry



Finite density of spins – competition between the Kondo effect and 

Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction of the spins

2 cos[2 ]j k F jk

S S d
j kF jk

S S k rJ
H

v r
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

 

d – number of dimensions jk j kr r r 



Single spin: T-invariance always survives due to the 
Kondo effect

Finite density of spins: T-invariance can be violated 
spontaneously (Kondo      RKKY)

but

the backscattering would not appear as long as the z-
component of the total spin is conserved = the system 
remains U(1)-symmetric, i.e. invariant under rotations 
in spin space around z-axis. 

Q: What if there is a small but finite density 
of localized and anisotropic spins ?

(1) : ( );z z x x y y

z x y x yJ S J S J S J JU     



Q: What if there is a small but finite density 
of localized and anisotropic spins ?

Kondo Spin glassRKKY

density of spins

electron-spin 
coupling constant

T-invariant
Broken 

T-invariance

Spontaneous breaking of the time-reversal symmetry 

Indirect exchange of 
the localized spins -
“RKKY” interaction

)( jxS 

)( kxS



No magnetic 
anisotropy U(1)

is conserved

Magnetic anisotropy
is not conserved

U(1)

No 
disorder
(regular 

spin chain)

Perfect 1D metal Band Insulator:

Charged excitations  
are gapped even at the 

edge

Disorder

Goldstone mode
perfect 1D 
metal

Anderson Insulator:

Edge states are 
localized

tot

zS

tot

zS

22e h 

22e h 
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Helical edge

Helical edge

Localized spins

Insulating bulk

x
yz

Left mover
Spin down

Right mover
Spin up

Localized spin impurities    located at ,jS

Linear spin density ;)()(  
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a
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Free 
helical 
electrons:

Electron-spin interaction: 


||

||

( )

( )
2

z x y

z z x y

z

z z

J S J S S

J
J S S S

  

   

 

  

  

||

1 1
( ) , ( )

2 2
x y x yJ J J J J J   

- electron spin (               )

||| |J J 

:)1(U

( )
2

J
S S


  

 

Hamiltonian:

See HHH 

Electron operator:
1ˆ ( )
2

F

F

ik x

R

ik x

L

e
x

e







 
     

† ˆˆ ˆ   

Note: the Hamiltonian is T-invariant

† †

† †

( ) ( ) ( ) ( )

0
ˆ ˆ( ) ( )

0

( ) ( )

x

e F

x

F x xR R L L

H iv dx x x

iv dx x x
   

 
     

 

         
 





add:)1(U



:)1(U

Effective spin-spin 
(“RKKY”) interaction
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Effective spin-spin 
(“RKKY”) interaction
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Helical edge

Helical edge
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Coherent representation 
of the spins:
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Wess, Zumino. (1971).

Witten. (1983)



Need to 1. Integrate over
2. Integrate over
3. Take into account the chiral anomaly 
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Free chiral edge electrons
El-spin exchange, U(1) -symmetry

Fermions acquire a gap; 
A bosonic mode remains gapless

Ideal Metallic Conductance in the 
presence of a potential disorder  

Mapping for isotropic exchange
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Luttinger Liquid with small velocity 
and small Luttinger parameter



Electron-spin 
interaction:
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Mapping for anisotropic exchange



Matsubara Action (broken U(1)-symmetry)

Modified  boson action:
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(Giamarchi & Schulz, 1988 )  

Mapping on the problem of the pinning of 
one-dimensional charge-density wave by
potential disorder.
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Localization length can be of the order or even larger 
than the system size     something like a quantization
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Mesoscopic fluctuations 
are probably caused by 
the rearrangement of the 
spins with the change of 
the gate voltage



Conclusions

Interaction of helical edge electrons with closely 
located spin (Kondo) impurities lead to Anderson 
localization of electrons if the total z-component 
of spin is not conserved (broken U(1) symmetry) 

1. In the presence of U(1) symmetry spins rotate 
in the xy-plane. This restores effectively the 
time reversal symmetry and prevents localization;

2.  If U(1) symmetry is randomly broken, the spins 
are pinned, which means a spontaneous breaking of 
T-invariance, i.e. there remains no protection 
against Anderson localization

Physical interpretation:  



Q: Is the topological insulator a 
distinct new state of matter ?



Q:
Is the topological insulator a distinct new 
state of matter or it is a conventional 
Anderson insulator with the localization 
length at the edge can substantially 
exceed the one in the bulk.

?

Note that an arbitrary small concentration of 
Kondo impurities with arbitrary weak anisotropy 
eventually destroys the quantization.



Albeit electrons at 1d helical edge of a 2D topological 
insulator are more protected from an influence of random 
imperfections, they are still subjected to Anderson 
localization similar to the usual 1D conductors


