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& Part I: Quantum Phase Transition in 2D Crystalline
Superconductors From a new 2D superconducting phase to
the observation of quantum Griffiths Singularity

[Highly crystalline 2D superconductors

Yu Saito’, Tsutomu Nojima? and Yoshihiro Iwasa’-®

Abstract | Recent advances in materials fabrication have enabled the manufacturing of ordered
2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam
epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly
crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more
than an order of magnitude lower than that of conventional amorphous or granular thin films.

In this Review, we explore recent developments in the field of highly crystalline 2D
superconductors and highlight the unprecedented physical properties of these systems. In
particular, we explore the quantum metallic state (or possible metallic ground state), the
quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state
maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the
context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a
discussion of how these unconventional properties make highly crystalline 2D systems promising
platforms for the exploration of new quantum physics and high-temperature superconductors.

Nature Reviews Materials 2, 16094 (2017)



1. Detection of a new superconducting phase in 2D limit: a two-
atom layer Ga film grown on semiconducting GaN(0001)

Physical Review Letters 114, 107003 (2015) (Editors’ Suggestion)
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Two-atom layer Ga film grown on GaN(0001) by MBE
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The superconductivity of two-atom layer Ga film on GaN(0001)
detected by in situ STM
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The
superconductivity
of two-atom layer
Ga film on
GaN(0001) detected
by ex situ transport
and magnetization
measurements.

Peking University

Dr. Yi Sun
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Therefore, a new superconducting phase in 2D limit is
discovered.

Two-atom layer Ga on GaN vs. stable bulk a phase Ga:
1. Tc: 5.4 Kvs. 1.08 k
2. Hexagonal (graphene-like) vs. orthorhombic (completely

different lattice constant)

A “man-made” or “artificial” 2D crystal or 2D superconductor!

Physical Review Letters 114, 107003 (2015)



Summary

1.

NEFES

PEKING UNIVERSITY

By in situ STM/STS and ex situ transport and magnetization
measurements, we discover a new 2D superconducting phase with a
transition temperature up to 5.4 K in 2 ML (0.552nm) crystalline Ga films
grown on wide band-gap semiconductor GaN.

It is the first conventional crystalline superconductor in 2D limit showing
Tc enhancement and ex situ superconductivity. The observed
superconductivity in atomic-scale thin films with relatively high T.and H,
demonstrates the feasibility in developing dissipationless quantum
electronic devices based on wide band-gap semiconductors.

Our result demonstrates a pathway for exploring atomic-scale 2D
superconductors by surface and interface engineering in a broad range of
metal-semiconductor heterostructures, which benefit from present
semiconductor technology and ultrathin film fabrication technique.

Physical Review Letters 114, 107003 (2015) (Editors’ Suggestion)



& Part I: From a new 2D superconducting phase to the observation of
Griffiths Singularity

2. Quantum Griffiths Singularity of Superconductor-Metal Transition in
Ga Thin Films
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STM topographic images and STS results

of 3 ML Ga film. (A) Constant current
topographic STM images (3.0 V, 0.05 nA,
200 X 200 nm?) of Ga film on GaN substrate.
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Transport properties of 3 ML Ga film: Si/Ga/GaN
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Superconductor-insulator or superconductor-metal transition (SIT or SMT)
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Magnetoresistance isotherms at ultralow temperatures.
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Determination of QPT from measurement at nonzero temperature
(Finite Size Scaling)

Phenomenological scaling law: Rs B—Bx

Where F is an arbitrary function with F(0) =1 (at critical point)
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Exponent zv obtained by scaling

(A)(C)(E)(G) The sheet
resistance as a function
of magnetic field close
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The activated quantum scaling behavior:
exponent zv as a function of magnetic field B.
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Novel discovery: previous studies show the
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Ying Xing et al., Science 350, 542-545 (2015)
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More than 40 years ago, Robert B. Griffiths predicted that phase transitions can be
dramatically changed by disorder effect and in particular the dynamical critical exponent
can diverge. In the last 40 years, this theory has been applied to quantum phase transitions
and developed into the theory of “quantum Griffiths singularity”. However, the major
signature of the theory, the divergence of dynamical critical exponent, is very difficult to
observe in experiments.

The discovery of quantum Griffiths singularity of superconductor-metal transition in Ga
thin films Science 350, 542-545 (2015)
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A perspective paper: Science 350, 509

The observation of the quantum Griffiths
singularity in a 2D superconductor offers a
new perspective on the previous studies of
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have been studied for decades, there are lin-
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Discovery of quantum Griffiths singularity in 2D superconductors:
potential universal behavior for superconductor-metal transition
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& 3. Observation of quantum Griffiths singularity at
superconducting LaAlO3/SrTiO3(110) interface
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Superconducting LaAlO3/SrTiO3(110) Interface
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Answer: Quantum Griffiths singularity is
detected at superconducting oxides
interface.

Physical Review B 94, 144517 (2016)
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Quantum Griffiths
singularity: Universal
behavior for superconductor-
metal transition in 2D
superconductors?
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The Gating effect on quantum Griffiths singularity:
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FIG. 4. The quantum Griffiths singularity for ¥z = 20 V. (a) The R(7T) at zero magnetic field with T77°"°=0.109 K, and the inset
shows the definition of T°"s¢! with a value of 0.696 K. (b) The isotherms R(B) measured at different 7. Zoom-in view of cross
region is shown in the inset. (¢) The isotherms R(B) measured at different 7 ranged from 0.020 K to 0.300 K. The inset provides
the crossing points B, as a function of T, which are determined from the cross point of every adjacent two R(B) curves. (d) The B
dependence of zv values reveals the activated scaling behavior.



Hysteretic behavior at LAO/STO(110):
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Ferromagnetism at LAO/STO(110) was 08 04 00 04 08
ever predicted by Gang Chen PRL 2013. B (T)
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Received 28 Mar 2012 | Accepted 18 Jun 2012 | Published 17 Jul 2002
Evidence for charge-vortex duality
at the LaAlO3/SrTiO3 interface

MM, Mehta!, DA, Dikin!, C.W. Bark?, 5. Ryu?, CM. Folkman®, C.B. Eorm? & V. Chandrasekhar’ a H Q H, T

Figure 1| MR in the superconducting regime. (a) Parallel field MR 2= 2 function of different rates in the superconducting regime at vV =B0'V. Data for
anly one field sweep direction are shown for clarity. Arrow indicates the direction of field sweep. The inset shows the MR for forward and backward

field sweep directions at a sweep rate of mst". () Schematic of the system at difierent paraliel field values. The top layer is the ferromagnet, the
superconductor is shown through a gradient 25 extending some distance into the STO. bn this simplified picture, mag n reversal ooows by means
of damain wall propagation in the feromagnet. The icular c of the field due to the domain wall induces vortices in the superconducton.
(£} Perpendicular field MR for fields swept from negative to positive values for different field sweep rates for V= BOV. (d) Schematic of the
magnetization state of the system at different perpendicular fields. Owing ta the shape anicotropy of the system, the majority of the moments lie in plane,
but the external magnetic field onents the direction of the perpendicular ¢ nt of the magnetization of the di in wall. It should b= emphasized
that the magnetization configuration in the real system during reversal is definitely far more complicated, but would still give rise to a perpendicular
companent of the magnetic fisld. All data were taken at T=50mk_




Summary

1. Quantum Griffiths Singularity has been observed at
another 2D superconducting system: superconducting

LaAlO3/8rTiO3(110) Interface;

2. Gating capability, potential coexistence of SC and FM
may offer more modulation methods for detecting and
analyzing quantum Griffiths singularity at 2D
superconductors;

3. Quantum Griffiths singularity could be a universal
behavior for superconductor-metal transitions.



& Hints of quantum Griffiths singularity in other 2D superconductors from other
groups

ARTICLES nature
materials

PUBLISHED ONLINE: 14 APRIL 2013 | DOI:10.1038/NMAT 3624

Multiple quantum criticality in a two-dimensional
superconductor

J. Biscaras', N. Bergeal', S. Hurand', C. Feuillet-Palma’, A. Rastogi?, R. C. Budhani??, M. Grilli?,
S. Caprara® and J. Lesueur'

ARTICLES

nature
phySICS PUBLISHED ONLINE: 4 MAY 2014 | DOI: 10.1038/NPHY52961

Two-stage magnetic-field-tuned superconductor-
insulator transition in underdoped La,_,Sr,CuQ,

Xiaoyan Shi'™, Ping V. Lin', T. Sasagawa?, V. Dobrosavljevi¢' and Dragana Popovi¢'™*



& Further confirmation of quantum Griffiths singularity in superconductors from
other groups

Iwasa group at Tokyo University found quantum Griffiths singularity like what we
observed in Ga films by liquid gating measurement.

APS March Meeting 2016

Volume 61, Number 2
Monday-Friday, March 14-18, 2016; Baltimore, Maryland

Session 815: 2D Materials: Superconductivity and Correlations |l
11:15 AM-2:15 PM, Thursday, March 17, 2016
Room: 314

Sponsoring Unit: DMP
Chair: James Eckstein, UIUC

Abstract ID: BAPS.2016.MAR.S15.3

Abstract: $15.00003 : Griffiths singularity of quantum phase transition in ion-gated ZrNClI
12:03 PM-12:15 PM

Preview Abstract MathJax On| Off 4= Abstract =
AU saio One of the most important topics in 2D
{The University of Tokyo)
) superconductors
Tsutomu Nojima . .
(Tonoku Universy) Nature Reviews Materials 2, 16094 (2017)

Yoshihiro lwasa
(The University of Tokyo)

Recent technological advances of thin films fabrication, especially mechanical exfoliation, led to discoveries of less-disordered highly-crystalline
two-dimensional (2D) superconductors; atomically thin NbSe2 and ion-gated 2D materials, which show intrinsic properties of 2D superconductors
with minimal disorder; for example, metallic ground state [1,2], and unconventional 2D Ising superconductivity due to pure spin-valley locking
effect [3-5]. In this talk, we focus on magnetotransport properties of an ionic-liquid gated ZrNCI, which exhibited Griffiths singularity-like behavior in
superconductor-metal-insulator transition induced by magnetic fields at low carrier concentrations. The overall behavior is quite similar to the
recent results of superconducting Ga thin films, in which quantum Griffiths singularity was observed in vortex-glass state [6]. We will discuss the
relationship between Griffiths singularity and quantum tunneling or flux flow of vortices phase (vortex liquid) in our system. [1] Y. Saito et al.
Science 350, 409 (2015). [2] A. W. Tsen et al. arXiv 1507.08639 [3] Y. Saito et al. Nature Phys. doi: 10.1038/nphys3580. (arXiv:1506.04146). [4]
X. Xietal arXiv:1507.08731. [5] J. M. Lu et al. arXiv:1506.07620. [6] Y. Xing et al. Science 350, 542 (2015).



FHigth crystalline 2D superconductors

Yu Saito’, Tsutomu Nojima? and Yoshihiro Iwasa’-®

Abstract | Recent advances in materials fabrication have enabled the manufacturing of ordered
2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam
epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly
crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more
than an order of magnitude lower than that of conventional amorphous or granular thin films.

In this Review, we explore recent developments in the field of highly crystalline 2D
superconductors and highlight the unprecedented physical properties of these systems. In
particular, we explore the quantum metallic state (or possible metallic ground state), the
quantum Criffiths phase observed in out-of-plane magnetic fields and the superconducting state
maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the
context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a
discussion of how these unconventional properties make highly crystalline 2D systems promising
platforms for the exploration of new quantum physics and high-temperature superconductors.

Nature Reviews Materials 2, 16094 (2017)

Three most important topics in 2D superconductors:
Quantum metallic state, Quantum Griffiths Singularity, superconducting state
maintained in huge in-plane magnetic field

Can them co-exist in one 2D superconductor?



4. Coexistence of Ising Superconductivity and Quantum Phase
Transition in Macro-Size Monolayer NbSe,

In collaboration with Prof. Shuaihua Ji etc

e : < c Amorphous Se ~10 nm 1%0F
: ' . D€ _

: o : Submonolayer NbSe, ~pe3nm "I
@ L

Bilayer graphene ~0.67 nm = T

6H-SiC(0001) ~500 um ot

1 " 1 " 1 " 1
0 100 200 300

Nano Letters (2017), DOI: 10.1021/acs.nanolett.7b03026



Layered transition metal dichalcogenides NbSe,
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A reduction in the number of Fermi-level
Van der Waals coupling

Teow™ 33 K (bulk);

To~7.2 K (bulk);

: . PRB 16, 801 (1977)
Anisotropic s-wave superconductor
(bulk). Nat. Phys. 12,92(2016)

J. Phys, Chem. Solids 26, 1029 (1965)

crossing bands from three (for bulk) to one

in the single-layer limit.



Layered transition metal dichalcogenides NbSe,

The superconductivity weakens
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in the monolayer limit.

Nat. Phys. 12,139(2016)
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STM 1mage of monolayer NbSe, film grown on epitaxial bilayer
graphene (BLG) on 6H-S1C(0001) substrate

high

1 nmX 18 m | 1.9 pm X 1.9 pm o
» Substrate: bi-layer graphene with N-doped 6H-SiC(0001) substrates

Sample: MBE method, Shuaihua Ji (TSU)



Transport results in 1 ML NbSe,
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Zero resistance was not observed in previous monolayer flakes.

» The growth rate of 2.5 MLs per hour;

Nano Letters (2017), DOI:
10.1021/acs.nanolett. 7603026

» Se capping layer with the thickness of 20 nm.

300

» Van der Waals interaction between SiC, BLG, and NbSe,;
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Transport results in 1 ML NbSe,
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H-T phase diagram for 1 ML NbSe,

Ising Superconductivity

40

T/Tc down to 0.13

Fulde-Ferrell-Larkin-

0.0 | 0.3 0.6 0.9 . Ovchinnikov state ?

T/ Tc B.,/B,:1.5~2.5 times
The Pauli limit field is surpassed !
For g =2 (BCS superconductor) For g=1.2 (bulk NbSe,)
H,~1.84T~6.36 T H,~237T~821T



Ising superconductivity in gated MoS,
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e B,y ™~ from intrinsic spin-orbit coupling

* Spins of the pairing electrons are strongly pinned by B,
in a direction orthogonal to an external magnetic field;

* The superconductivity can be strongly protective.
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monolayer NbSe,: non-centrosymmetric

K’ K
Spin-Orbit locking are dominated
by the K (K”) pockets

Science 350,1353(2015)



Magnetic field induced superconductor-metal transition
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Conclusion for Monolayer NbSe,

The macro-size atomically flat monolayer NbSe, films were successfully grown
on bilayer graphene/SiC by MBE method, 7.°" 1s above 6 K and zero resistance
Tc around 2.4 K, higher than previous reports on NbSe, monolayers.

In non-centrosymmetric monolayer NbSe,, direct high magnetic field and low
temperature measurement show B_(0) 1s at least 5.09 times of the Pauli
paramagnetic limit, consistent with Zeeman protected Ising superconducting
mechanism.

The magnetic field driven SMT 1s detected in monolayer NbSe, and the signature
of the quantum Griffiths singularity is observed by ultralow temperature
measurements.

Monolayer NbSe, could be a new platform to create topological
superconductivity and Majorana Fermions.

Nano Letters (2017), DOI: 10.1021/acs.nanolett. 7603026
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ingth crystalline 2D superconductors

Yu Saito’, Tsutomu Nojima? and Yoshihiro Iwasa’-3

Abstract | Recent advances in materials fabrication have enabled the manufacturing of ordered
2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam
epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly
crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more
than an order of magnitude lower than that of conventional amorphous or granular thin films.

In this Review, we explore recent developments in the field of highly crystalline 2D
superconductors and highlight the unprecedented physical properties of these systems. In
particular, we explore the quantum metallic state (or possible metallic ground state), the
quantum GCriffiths phase observed in out-of-plane magnetic fields and the superconducting state
maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the
context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a
discussion of how these unconventional properties make highly crystalline 2D systems promising
platforms for the exploration of new quantum physics and high-temperature superconductors.

Nature Reviews Materials 2, 16094 (2017)

Quantum metal?



Outline
& Part |. Quantum Griffiths singularity for superconductor-metal transition :
new quantum phase transition found in 2D superconductors
1. Detection of a New Superconducting Phase in 2D limit
Physical Review Letters 114, 107003 (2015) (Editors’ Suggestion)

2. Quantum Griffiths Singularity of Superconductor-Metal Transition in
Ga Thin Films

Science 350, 542-545 (2015) (with a perspective paper: Science 350, 509)

3. Confirmation of Quantum Griffiths Singularity at Superconducting
LaAlO3/8rTiO3(110) Interface

Physical Review B 94, 144517 (2016)

4. Coexistence of Quantum Griffiths Singularity and Ising
superconductivity

Nano Letters (2017), DOI: 10.1021/acs.nanolett.7b03026
Perspective: to detect quantum Griffiths singularity for superconductor-

metal transition in disorder-controlled 2D superconducting systems and
high Tc superconductors



http://www.sciencemag.org/content/350/6260/509.short

Summary for 2D Crystalline Superconductors

Perspective of next generation of superconductors:

superconductivity at 2D crystalline materials

1. Superconductivity at 2D limit;

e. g. Monolayer Pb and In on Si substrates

Prof. Qi-Kun Xue at Tsinghua University: pNagture Physics 6, 104 (2010)

Prof. Hasegawa at University of Tokyo : PRl 110, 237001 (2013)
Tomonobu Nakayama group at National Institute for Materials Science:

PRL107,207001 (2011)
2. Interface and high Tc superconductors;

e.g. Crystalline FeSe films on STO by interface engineering

Iron-based compound revives search for room-temperature superconductors.
474 | NATURE | VOL 501 | 26 SEPFPTEMBER 2013

3. Quantum phase and phase transitions;

e.g. Quantum Griffiths Singularity in Crystalline Ga films,
LAO/STO(112), NbSe, films, ZrNCl etc Disorder is important.

4. Potential topological superconductors.



& Updated: Discovery of unconventional superconductivity on
topological semimetals induced by hard point contact

1. Physical Review X 5, 031037 (2015)

2. Nature Materials 15, 38-42 (2016)

3. Science Bulletin 62, 425 (2017)

4. npj Quantum Materials 1, 16005 (2016)

Superconductivity on Dirac Semimetal Cd3As2
A new method to detect topological
superconductivity! Further theoretical
investigations are highly desired.

gl Superconductivity on Weyl Semimetal TaAs
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