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Introduction

e Ultracold atoms:
small collision energies
(compared to the Van der Waals energy);
large de Broglie wave lengths
(compared to the Van der Waals range).

® [ow-energy nucleons/nuclel
are similar




Introduction

e Ultracold atoms:
small collision energies
(compared to the Van der Waals energy);
large de Broglie wave lengths
(compared to the Van der Waals range).

® [ow-energy nucleons/nuclel
are similar

Develop a general approach for a few particles,
treating £ and 1// as small parameters

E: energy [: s1ze of system
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A general framework for few-body physics
in the ultracold regime

Consider any number of objects, in any dimension, with
generic mteractions, colliding at a small energy:

Hp = Ep

In a region of configuration space small compared
to the de Broglie wave length associated with £:

=" cu(¢W + BFID 4 B2g 1)

where a
HoW =0 H W = p0 HoW = £
qb(“>, f (“), g(“), ... . special wave functions

see, eg, 1lan, PRA 2008
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Why study resonances

Ultracold atoms are usually weakly interacting

A lot are known:

use two-body scattering length, two-body effective
range, three-body scattering hypervolume, etc as
effective interaction parameters

Turn to resonances: system strongly interacting, and
much more interesting

But a lot are known about TWO-body resonances

So let’s turn to THREE-BODY RESONANCES




Why study three-body resonances?

® |[Definition]
If three particles have a bound state near zero
energy, we say they are near a three-body resonance

® Strongly interacting and interesting

® Applications in ultracold atoms near three-body
resonances, and three-body nuclear halo states

® Applications in other systems (eg, excitons, other
particles)




Textbook wisdom

Three-body problem often cannot be solved analytically
(famous example: the motion of 3 gravitating celestial

bodies may display chaos)
But, let us study 3-body problem analytically

Our trick: study the wave functions
at small collision energies & large inter-particle distances




Three-body Schrodinger equation

Consider 3 bosons with interactions that are
translationally, rotationally, and Galilean invariant,
and short-ranged, fine-tuned such that there 1s a bound
state with zero energy and zero orbital angular
momentum.

Hzvp = E

ki 4 k3 + k3 1

1
> Yk koks T 5 /k/ Uk, k. k'k” Vk'k ks +

A / ngkgk’k”wklk’k”
k/

(H3%)k koks = >

1

1
~ Uk koksk, Kk, V! KK,
K k!
12

+_/ Uksler 'k P/ ko ke
k/

2 6

where [ =[5 [ =/ Goiimn (m=h=1)
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Two-body special wave functions
HoYp = Ev

1 [ d°K
(Hot)k = K i + 5 / (27)3 Uk, —k,x',—k' Yk’

In the ultracold regime, £ 1s small.
May expand the wave function as

Yk = ok + Efi + E%gx
Hoyr =0 H fy = ¢k Hogy = fr ...

Outside the range of interaction, we have
o(r)=1—a/r f(r):—fr2/6+a’r/2—ar5/2
'Y (r) = (r?/15 — 3aq/r®) Py(i - F)
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Three-body special wave functions
H3yp = B

In the ultracold regime, E 1s small.
May expand the wave function as

w — ¢(3) _|_Ef(3) _|_E'2g(3) + ...

(3) (3) :
where qbk1k2 ke Tk, koks Ik kokso €IC, are special wave

functions, and serve as building blocks ot the wave
functions at arbitrary energies.

H3p®) =0
Hy f®) = ¢®
3 = )




Three-body special wave functions

Once we know the special wave functions,
(3) (3) (3) i

Pl koks® Jkikoks® Ik kokss SLC,

we know ALL the details of three-body

effective interactions at low energy

The effective parameters such as the three-body
scattering hypervolume appear in the large-distance
or low-momentum expansions of these functions




The special wave function ¢

S1

4
82 w:§—\/§
S3

When s1, s2, s are all large,

3 20 3 8V3wa(ln & + v —1— 6;cot 26;) V3D
3 ~a | 4a*0;  2wa [a] ’ Yl —9
¢+ (rirers) oc 1 + [; S; " mR;s;  mwp2s; " w2 pt } 83 pt +O™)
lan, PRA 20068

At a three-body resonance, D — +o00, and

1
¢'¥) (r1rar3) o p -O(p™°)

which 1s also the wave function of the shallow
three-body bound state
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The special wave function ¢

1 :
The formula ¢'® (rirars) o pe +O(p~°) at large distances

corresponds to ¢ - -0(q )

dq1929s3 2 2 )
at small momenta 91 T 42 T 43




The special wave function ¢

There are small-momentum asvmptotic expansions for
ymp P
gb(g) and gb(g)

419293 q,—q/2+k,—q/2—k

where q’s are small but k 1s not.

Solving the exact Schrodinger equation, we can
refine the two asymptotic expansions back and forth,
1In a Z1g-zag manner.




The special wave function ¢

Asymptotic expansions at small q’s:

(3) [ V3 a 9+2V3m 3v/3 ;
qbq,—q/2—|—k,—q/2—k T [_ 8_7Tq T 3 2 q2 111(Q|CL|) + ( 79702 a2 T 6AT ars)q ¢k
3v/3 :
oy 0 i di + gPdgy + 0"

2 V3 4
¢5ﬁ)q2q3 = 5, 5, .5 {1 + Z {7% — \/gﬁch? ln(qq;Ial)} } + xo + O(q)
1

a. two-body scattering length
r s. two-body effective range

These expansions will be essential 1n the ultracold
physics of three or more such particles

|5
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The special wave function f'*
Hy f3) = 63
At small g’s, we get
fé?zlqu — 7"3(27‘(‘)65((11)5((12) + O(q_5),

where 743 1s the three-body effective range.
It’s the MOST IMPORTANT three-body parameter
at a resonance (1ts dimension: 1/length”2).

Using the Schrodinger equation, we get

2
¢(3)
kikoks
kiko




3 as a probability constant

From the formula

we find

3,.,73 (3) ? 3 L —3
d>rd R‘¢ (P/Q,—P/Q,R)‘ o 16v/3m |T3\—$+0(77 )
p<n

at a large cutoff hyperradius n




The special wave function f*

smar \/§ 1 a
(3) _ 3 _ 3 2 < 3. 1
fa a2k —q/2—k = [r3(27r) 4(q) 2 + <47T’LUCL rs3 + 127T> - + <16wa rs 2\/§7T2) n(qlal)
’ 3v/3
4 a _ 2 Vo
—|—(24\/§wa r3 + 4W2)qln(q\a\) + clq] Ok (37Twa r3 + o )qfk
+ [107’('&7“3 — 107 (27w — 3\/5)0,27“3(1} (bf{fﬁ +dy + 0(612)
3
2 2 V3 4 4,
(3) — ra(27)%6 0 ( ){1+ {—ai— aqilnqia)}}
faranas = T3(2m)°0(q1)d(az) + R B ;:1 5 44 3 (gilal
3 2 2
2 [ 3 32mea“r; 5 3 a N\ 1
— Admars(2m)°0(q;) + — (167‘(’ wa”rs + —)—
+q%+qg+q??; 2 ole) q; V37 4
2
—I—( — 64mwa’rs + z a2) ln(qi\a|)}
s

— o™\ 43 3 } (L_ 1 ) 2_3\/§
c1 = {—8(\/5 S)wa 27Twa rs|T3 + 2 19v3n a 327TWS

|18
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Now place the 3 particles 1n a large cubic box,
and 1mpose the periodic boundary condition

Question: how does the energy scale with L?

My previous conjecture: £ = |er4 -O(L™)

But this turns out to be incorrect :(

And even the question 1tself 1s slightly incorrect!
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Before solving the above problem, consider an
analogous, but easier problem:
ONE body 1n 6 dimensions, at a resonance

V() + [ d Vi )o) = Bo)

V. rotationally invariant, and short-ranged
(vanishes outside a finite 6d sphere around the origin)

(2m=h=1)

Effective-range expansion for the s-wave phase shift o:

1 1 2
k*cotd = —— + 5r8k2 + Zk* In(krl) + O(k°)
a 708

r s: effective range (dimension: 1/length”2)

a = £ o0 at resonance
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ONE body 1n 6 dimensions at a resonance

V() + [ d Vi )oe) = Bo)

s-wave special wave functions

In real space (outside the range of potential):

1
Pr) = 4r3rd |
flr) = 257;38#2 I 167372
In momentum space:
Pk = ]32 - (smooth function of k)
Sk s (27)°6 (k) : - (smooth function of k)

k4

21
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ONE body 1n 6 dimensions at a resonance

Now 1mpose the periodic boundary condition:

Y(r1 + L, w2, 3,04, %5,%6) = -+ = Y(21, T2, T3, T4, T5, T6)
Result:

_ 4 167’(‘ L_3 | 32&1 L_4 4 32(&% — 40&2)

Vs Ts |rs|3/2

L™° 4+ O(L™°)

There are TWO states with energies close to zero!

The energy of each state scales like 1/L73 at large L,
rather than 1/L."*4 as I previously conjectured.

/

1
a1 = )y —5 = —3.37968478344314798726129011
n
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ONE body in 6 dimensional box

When /=0, we know the energy-momentum eigenstates:

g @rm)? 2
L? L
Ground state: nondegenerate > energy gap ~ 1/L?

First excited state: 12-fold degenerate/

But at resonance, there are TWO low energy states, with energies

16 16
F~-——"213 FE ~f 23

So where does the positive energy state, [, come from?

Answer: 1t has evolved from the equal superposition of the 12

first excited states.
k2 _ K2

confirmed using a separable potential Vi = —me™ 2 e 2
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Now return to the 3 particles in the 3-dimensional box

Strategy: 1n the momentum space,
expand the wave function and energy 1n powers of € = 1/L:

_ p(0) 1 2
¢k1k2k3 — Rk1k2k3 + 721(<1)k2k3 + R1(<1)k2k3 +

wQa_Q/Q—I—k,—q/Q_k p— Sl({o)q Sl({l)q S}({Q)q
__ —3 _9 q
waqu?’ - 7:1(1 Q2)Q3 T 7:1(1(12)%3 T 7;1(1 qQ)CIS T

F = E(3) + E(4) + E(5) -
where q’s are of order ¢, and k’s are independent of ¢, and
X (8) o 28
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3 particles at a resonance 1n the 3-dimensional box

Solving the Schrodinger equation perturbatively in powers of €,
I find, eg,

0 3
Rl(q)k2 ks — ¢1(<1)k2 ks

721(5)1)1{21{3 = E) fﬁi{ i, T (terms that are less singular at or
7:l(1q32)QS = je’(2m)°0(a1)d(qz)
S(O)q (27€)°56(q) i + di Z (27€)°6(q — 2men)
(127a — E®e™3)j =1
j=E® e 3,
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25



3 particles at a resonance 1n the 3-dimensional box

Solving the equations
(127a — E®e3)j =1
j — E(3)€_3T3

we get TWO low energy states, with energies
6ra + ,/(67a)? + —
73]

E = = - O(L™%)
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3 particles at a resonance 1n the 3-dimensional box

If the two scattering length a = 0,

E ~ -

1
/3| L3

analogous to the one body at a resonance 1n 6-dimensional box
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3 particles at a resonance 1n the 3-dimensional box

[f the resonance is very narrow (r3 — —00),

Er

Eo

Y
Y/

N 12ma
N 3

(3-body state with an energy
mainly due to two-body interactions)

12ma

7’3|L3

(another 3-body state)
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Other results

If the interaction 1s slightly more attractive than the
critical interaction, so that D 1s large and positive,
there 1s a shallow three-body bound state with energy

1
73|D

E ~

But if the interaction 1s slightly less attractive than the
critical interaction, so that D 1s large and negative,

there 1s a metastable three-body state with energy
1
E ~ 4 1(small imaginary part
|T3D| ( )
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Summary

e Dectermined the special three-body wave
functions at a three-body resonance 1n
powers of 1/{size of the system,.

® Defined the three-body effective range n
terms of the special wave functions

® Determined the low lying energy

eigenstates 1n a large periodic volume.
Found TWO such states.
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Future directions on this subject

Three particles at a three-body resonance 1n a
harmonic trap

Definition of three-body effective range away from
resonance

More precise formula for the three-body bound
state (or metastable state) energy slightly off
resonance

Three-body resonances in the presence of long-
range Van der Waals potential

Three-body resonances for 1dentical fermions
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