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Introduction
• Ultracold atoms:

small collision energies
(compared to the Van der Waals energy);
large de Broglie wave lengths
(compared to the Van der Waals range).

• Low-energy nucleons/nuclei
are similar
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Introduction
• Ultracold atoms:

small collision energies
(compared to the Van der Waals energy);
large de Broglie wave lengths
(compared to the Van der Waals range).

• Low-energy nucleons/nuclei
are similar

Develop a general approach for a few particles, 
treating E and 1/l  as small parameters

E: energy          l: size of system
3
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A general framework for few-body physics
in the ultracold regime
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Hψ = Eψ

Consider any number of objects, in any dimension, with 
generic interactions, colliding at a small energy:

In a region of configuration space small compared 
to the de Broglie wave length associated with E:

where 

...

special wave functions
see, eg, Tan, PRA 2008

Hφ
(µ) = 0 Hf

(µ) = φ
(µ)

Hg
(µ) = f

(µ)

ψ =
�

µ

cµ(φ(µ) + Ef (µ) + E2g(µ) + · · · )

φ(µ), f (µ), g(µ), · · · :
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Why study resonances
• Ultracold atoms are usually weakly interacting

• A lot are known:
use two-body scattering length, two-body effective 
range, three-body scattering hypervolume, etc as 
effective interaction parameters

• Turn to resonances: system strongly interacting, and 
much more interesting

• But a lot are known about TWO-body resonances

• So let’s turn to THREE-BODY RESONANCES
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• [Definition]
If three particles have a bound state near zero 
energy, we say they are near a three-body resonance

• Strongly interacting and interesting

• Applications in ultracold atoms near three-body 
resonances, and three-body nuclear halo states

• Applications in other systems (eg, excitons, other 
particles)

Why study three-body resonances?
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Textbook wisdom
Three-body problem often cannot be solved analytically 
(famous example: the motion of 3 gravitating celestial 
bodies may display chaos)

But, let us study 3-body problem analytically
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Our trick: study the wave functions
at small collision energies & large inter-particle distances
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Three-body Schrödinger equation

H3ψ = Eψ

Consider 3 bosons with interactions that are
translationally, rotationally, and Galilean invariant,
and short-ranged, fine-tuned such that there is a bound 
state with zero energy and zero orbital angular 
momentum.

(H3ψ)k1k2k3 =
k

2
1 + k

2
2 + k

2
3

2
ψk1k2k3 +

1
2

�

k�
Uk1k2k�k��ψk�k��k3 +

1
2

�

k�
Uk2k3k�k��ψk1k�k��

+
1
2

�

k�
Uk3k1k�k��ψk�k2k�� +

1
6

�

k�
1k

�
2

Uk1k2k3k�
1k

�
2k

�
3
ψk�

1k
�
2k

�
3

�

k�
≡

�
d3k�

(2π)3
,

�

k�
1k

�
2

≡
�

d3k�
1

(2π)3
d3k�

2

(2π)3where (m = � = 1)
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Two-body special wave functions
H2ψ = Eψ

In the ultracold regime, E is small.
May expand the wave function as

ψk = φk + Efk + E2gk + · · ·

(H2ψ)k = k
2
ψk +

1
2

�
d
3
k
�

(2π)3
Uk,−k,k�,−k�ψk�

Hφk = 0 Hfk = φk Hgk = fk ......

φ(r) = 1− a/r f(r) = −r2/6 + ar/2− ars/2

Outside the range of interaction, we have

φ(d)
n̂ (r) = (r2/15− 3ad/r3)P2(n̂ · r̂)
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H3ψ = Eψ

ψ = φ(3) + Ef (3) + E2g(3) + · · ·

In the ultracold regime, E is small.
May expand the wave function as

φ(3)
k1k2k3

, f (3)
k1k2k3

, g(3)
k1k2k3

,where                                          etc, are special wave 
functions, and serve as building blocks of the wave 
functions at arbitrary energies.

H3φ
(3) = 0

H3f
(3) = φ

(3)

H3g
(3) = f

(3)

...

Three-body special wave functions
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Once we know the special wave functions,
                                         etc,
we know ALL the details of three-body 
effective interactions at low energy

φ(3)
k1k2k3

, f (3)
k1k2k3

, g(3)
k1k2k3

,

The effective parameters such as the three-body 
scattering hypervolume appear in the large-distance 
or low-momentum expansions of these functions
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Three-body special wave functions
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φ
(3)(r1r2r3) ∝ 1 +

� 3�

i=1

− a

si
+

4a2θi

πRisi
− 2wa3

πρ2si
+

8
√

3 wa4(ln ρ
|a| + γ − 1− θi cot 2θi)

π2ρ4

�
−
√

3 D

8π3ρ4
+ O(ρ−5)

φ(3)The special wave function
s1

s2
s3

s1, s2, s3When                 are all large,

Tan, PRA 2008

At a three-body resonance,                , andD → ±∞

φ
(3)(r1r2r3) ∝

1
ρ4

+ O(ρ−5)

which is also the wave function of the shallow 
three-body bound state

w =
4π

3
−
√

3
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φ(3)The special wave function

φ
(3)(r1r2r3) ∝

1
ρ4

+ O(ρ−5)The formula                                           at large distances

corresponds to                                                   
at small momenta

φ
(3)
q1q2q3

∝ 2
q2
1 + q2

2 + q2
3

+ O(q−1)
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φ(3)The special wave function

φ(3)
q1q2q3

and φ(3)
q,−q/2+k,−q/2−k

There are small-momentum asymptotic expansions for 

where q’s are small but k is not.

Solving the exact Schrödinger equation, we can 
refine the two asymptotic expansions back and forth, 
in a zig-zag manner.
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φ(3)The special wave function

φ(3)
q,−q/2+k,−q/2−k =

�
−
√

3
8π

q +
a√
3 π2

q2 ln(q|a|) +
�9 + 2

√
3 π

72π2
a2 +

3
√

3
64π

ars

�
q3

�
φk

+
3
√

3
32π

q
3
fk + dk + q

2
d
(2)
q̂k + O(q4)

φ
(3)
q1q2q3

=
2

q2
1 + q2

2 + q2
3

�
1 +

3�

i=1

�√3
2

aqi −
4√
3 π

a
2
q
2
i ln(qi|a|)

��
+ χ0 + O(q)

Asymptotic expansions at small q’s:

   a:  two-body scattering length
r_s:  two-body effective range

These expansions will be essential in the ultracold 
physics of three or more such particles
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The special wave function f (3)

H3f
(3) = φ

(3)

At small q’s, we get
f

(3)
q1q2q3

= r3(2π)6δ(q1)δ(q2) + O(q−5),

where       is the three-body effective range.
It’s the MOST IMPORTANT three-body parameter 
at a resonance (its dimension: 1/length^2).

r3

�

k1k2

���φ(3)
k1k2k3

���
2

= −r3
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Using the Schrödinger equation, we get

16



17

as a probability constantr3

From the formula
�

k1k2

���φ(3)
k1k2k3

���
2

= −r3,

we find
�

ρ<η
d
3
rd

3
R

���φ(3)(r/2,−r/2,R)
���
2
∝ 16

√
3 π

3|r3| − 1
η2

+ O(η−3)

at a large cutoff hyperradius η
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The special wave function f (3)

f (3)
q,−q/2+k,−q/2−k =

�
r3(2π)3δ(q)− 8πar3

q2
+

�
4πwa2r3 +

√
3

12π

�1
q

+
�
16wa3r3 −

a

2
√

3 π2

�
ln(q|a|)

+
�
24
√

3 wa4r3 +
a2

4π2

�
q ln(q|a|) + c1q

�
φk −

�
3πwa2r3 +

3
√

3
16π

�
qfk

+
�
10πar3 − 10π(2π − 3

√
3 )a2

r3q

�
φ

(d)
q̂k + d̂k + O(q2)

f (3)
q1q2q3

= r3(2π)6δ(q1)δ(q2) +
� 2

q2
1 + q2

2 + q2
3

�2
�

1 +
3�

i=1

�√3
2

aqi −
4√
3 π

a2q2
i ln(qi|a|)

��

+
2

q2
1 + q2

2 + q2
3

3�

i=1

�
− 4πar3(2π)3δ(qi) +

32π2a2r3

q2
i

−
�
16π2wa3r3 +

a√
3

� 1
qi

+
�
− 64πwa4r3 +

2√
3 π

a2
�

ln(qi|a|)
�

+u0r3

3�

i=1

�
(2π)3δ(qi)−

8πa

q2
i

�
+ O(q−1),

c1 ≡
�
− 8

�√
3− π

3

�
wa4 − 3

2
πwa3rs

�
r3 +

� 1
4π2

− 1
12
√

3 π

�
a2 − 3

√
3

32π
ars
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L

L
L

Now place the 3 particles in a large cubic box,
and impose the periodic boundary condition

Question: how does the energy scale with L?

My previous conjecture:

But this turns out to be incorrect :(

E = − #
|r3|L4

+ O(L−5)

And even the question itself is slightly incorrect!
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Before solving the above problem, consider an 
analogous, but easier problem:
ONE body in 6 dimensions, at a resonance

−∇2ψ(r) +
�

d6r�V (r, r�)ψ(r�) = Eψ(r)

V: rotationally invariant, and short-ranged
(vanishes outside a finite 6d sphere around the origin)

k
4 cot δ = −1

a
+

1
2
rsk

2 +
2
π

k
4 ln(kr

�
s) + O(k6)

Effective-range expansion for the s-wave phase shift δ:

a = ± ∞ at resonance

r_s: effective range (dimension: 1/length^2)

(2m = � = 1)
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ONE body in 6 dimensions at a resonance
−∇2ψ(r) +

�
d6r�V (r, r�)ψ(r�) = Eψ(r)

φ(r) =
1

4π3r4

f(r) =
rs

256π2
+

1
16π3r2

s-wave special wave functions

In real space (outside the range of potential):

φk =
1
k2

+ (smooth function of k)

fk =
rs

256π2
(2π)6δ(k) +

1
k4

+ (smooth function of k)

In momentum space:
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ONE body in 6 dimensions at a resonance

Now impose the periodic boundary condition:
ψ(x1 + L, x2, x3, x4, x5, x6) = · · · = ψ(x1, x2, x3, x4, x5, x6)

Result:

E = ± 16π�
|rs|

L
−3 +

32α1

rs
L
−4 ± 32(α2

1 − 4α2)
π|rs|3/2

L
−5 + O(L−6)

There are TWO states with energies close to zero!
The energy of each state scales like 1/L^3 at large L,
rather than 1/L^4 as I previously conjectured.

α2 ≡
��

n �=0

1
n4

= πα1

α1 ≡
��

n �=0

1
n2

= −3.37968478344314798726129011
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ONE body in 6 dimensional box

When V=0, we know the energy-momentum eigenstates:

E =
(2π|n|)2

L2

Ground state: nondegenerate
First excited state: 12-fold degenerate

But at resonance, there are TWO low energy states, with energies 

energy gap∼ 1/L2

Answer: it has evolved from the equal superposition of the 12 
first excited states.

E− ≈ −
16π�

|rs|
L−3 E+ ≈ +

16π�
|rs|

L−3

So where does the positive energy state,       , come from?E+

p =
2πn
L

Vkk� = −ηe−
k2
2 e−

k�2
2confirmed using a separable potential
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L

L
L

Now return to the 3 particles in the 3-dimensional box

Strategy: in the momentum space,
expand the wave function and energy in powers of ε ≡ 1/L:

ψk1k2k3 = R(0)
k1k2k3

+R(1)
k1k2k3

+R(2)
k1k2k3

+ · · ·

ψq,−q/2+k,−q/2−k = S(0)q
k + S(1)q

k + S(2)q
k + · · ·

ψq1q2q3 = T (−3)
q1q2q3

+ T (−2)
q1q2q3

+ T (−1)
q1q2q3

+ · · ·

E = E(3) + E(4) + E(5) · · ·
where q’s are of order ε, and k’s are independent of ε, and

X(s) ∼ εs
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L
L

3 particles at a resonance in the 3-dimensional box

Solving the Schrödinger equation perturbatively in powers of ε,
I find, eg, 

S(0)q
k = (2π�)3jδ(q)φk + dk

�

n

(2π�)3δ(q− 2π�n)

(12πa− E(3)�−3)j = 1

j = E(3)�−3r3

R(3)
k1k2k3

= E(3)f (3)
k1k2k3

+ (terms that are less singular at origin)

R(0)
k1k2k3

= φ(3)
k1k2k3

T (−3)
q1q2q3

= j�3(2π)6δ(q1)δ(q2)
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(12πa− E(3)�−3)j = 1

j = E(3)�−3r3

L

L
L

3 particles at a resonance in the 3-dimensional box

Solving the equations

we get TWO low energy states, with energies

E =
6πa±

�
(6πa)2 + 1

|r3|

L3
+ O(L−4)
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L

L
L

3 particles at a resonance in the 3-dimensional box

E =
6πa±

�
(6πa)2 + 1

|r3|

L3
+ O(L−4)

If the two scattering length a = 0,

E ≈ ± 1�
|r3|L3

analogous to the one body at a resonance in 6-dimensional box
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L

L
L

3 particles at a resonance in the 3-dimensional box

E =
6πa±

�
(6πa)2 + 1

|r3|

L3
+ O(L−4)

If the resonance is very narrow                      ,(r3 → −∞)

E1 ≈
12πa

L3

E2 ≈ −
1

12πa|r3|L3

(3-body state with an energy
 mainly due to two-body interactions)

(another 3-body state)
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Other results
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If the interaction is slightly more attractive than the 
critical interaction, so that D is large and positive, 
there is a shallow three-body bound state with energy

E ≈ − 1
|r3|D

But if the interaction is slightly less attractive than the 
critical interaction, so that D is large and negative, 
there is a metastable three-body state with energy

E ≈ +
1

|r3D| − i(small imaginary part)
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Summary
• Determined the special three-body wave 

functions at a three-body resonance in 
powers of 1/{size of the system}.

• Defined the three-body effective range in 
terms of the special wave functions

• Determined the low lying energy 
eigenstates in a large periodic volume. 
Found TWO such states.
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Future directions on this subject
• Three particles at a three-body resonance in a 

harmonic trap

• Definition of three-body effective range away from 
resonance

• More precise formula for the three-body bound 
state (or metastable state) energy slightly off 
resonance

• Three-body resonances in the presence of long-
range Van der Waals potential

• Three-body resonances for identical fermions

• ...
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