Superfluidity in

One Dimension as a
Dynamical Phenomengii
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Criterion for Superfluidity
€(p)

Landau’s criterion min {7} = Pandan= 0

= how to understand finite T ? etc.
Helicity modulus [ME Fisher et al, 1973]
V(z+ L,y,z) = €¥VU(z,y, 2)

. L (0°F
T(T) = LEIjILloo S ( 890(2('0))

=0
h2
Y(T) = EPS(T) Superfluid density
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Superfluidity in 2D

No off-diagonal LRO at T>0 (Mermin-VWagner theorem)

But helicity modulus is finite for T<TgkT
“universal jump” at T<Tgkt [Nelson-Kosterlitz 1977]

f Dynamic Theory ﬂ SuperfIUidity is indeed

] —-=--=5S1a11¢c Theory

K | | observed in torsional oscillator
measurements of 2D *He film

[Bishop-Reppy 1978]

' v o~ ~0
(e) @ xﬁ!hf

Dynamical effects are
also important
[ Ambegaokar-Halperin-

»‘X »4
4.-&\;“ , | Nelson-Siggia 1978]
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Superfluidity in | D?
Helicity modulus vanishes in ID (in thermodynamic limit)

O |
Tip(T) = lim L (d @ig(f)) _ 0

=0

Hence, no superfluidity in 1D?



Liquid “He in 1D nanopore
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Results (2.8nm diameter)
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002 ¥l Superfluid(-like) response!
N 0.01 igéi . .
- 31|l superfluidity suppressed at higher
il pressures
0.01F
3
| Dissipation peak at
- | “superfluid transition temperature”
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Phase Diagram
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cf.) “He in 3D porous media

Gelsil
(pore ®~25A)

Shirahama et al. 2004~
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TLL description

Quantum Monte Carlo simulation (Worm Algorithm-
Path Integral) of microscopic Hamiltonian for 4He in
| D nanopore
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Finite-size effect!?

Helicity modulus Y(T) of a ID system vanishes,
but only in the thermodynamic limit

- maximum onset temperature
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Why superfluidity in 1D?

| O*F (

=0

r(r) 2 )

suatic )/ AN

property in
equilibrium

Dynamics



What is Superfluidity?

contalner
wall V

container

wall (stopped)
in equilibrium at

velocity v
How will the fluid behave?

- eventually come to rest
(normal fluid)

- move perpetually at velocity v
(superfluid)



What is superfluidity?

Initial condition of the fluid:
Galilean boost of the
equilibrium fluid at rest, with

container velocity v . .
—ithmuvx thmuvzx

wall (stopped) il = & Peq®

(O(t)> — Ty (ei?{t/hoe—i%t/hpini) — Ty (ei’ftt/hée—z”ﬁt/hpeq)

~

) = ez’hmvmoe—ihmvx

3 (h—<p +maf +UGD) + SV - 7)

2m et
) 1>

“effective Hamiltonian™ equivalent to phase twist
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What happens at t— 00!

Fluid reaches equilibrium with respect to effective
Hamiltonian (in the presence of static wall potential)

In 2 normal liquid, the resulting state should be

equivalent to Peq. But in a superfluid, a fraction
of fluid is still moving at velocity v

Free energy density  f(?) ~ f(0) - Bs 2
92 g ¢ h2
T = LEl—ll—loog ((?;;(;W - E'DS(T)
=0

Helicity modulus = Superfluid density ?
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What is assumed?

Fluid reaches equilibrium with respect to effective
Hamiltonian (in the presence of static wall potential)

i.e. we need (hidden) assumption of thermalization of
in order to derive Y=p;

Integrable systems in |D: thermalization is absent
due to infinite # of conserved quantities, so the
equivalence between Y and ps would break down



Generic Systems in 1D?

“Non-integrable models thermalize”
- common belief

This may not be always the case, but we would assume that
realistic, generic non-integrable systems eventually
thermalize 2

= resurrection of Y(7T') = EpS(T)

Then the superfluidity is absent in 1D in the strict sense.
However, due to the anomalous dynamics in | D, the
approach to equilibrium could be very slow.
Superfluidity might be observed

at experimentally relevant timescale
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Phase Slips

AU / Decay of “superflow’ and thermalization
\' ‘\k \ / caused by phase slips

\ \&\k L‘ /" Thermal Phase Slips
[Langer-Ambegaokar 1967,

Ol W ) / McCumber-Halperin 1968] AR
['rps ~ exp ( kBT)

“Quantum” Phase Slips
[Khlebnikov 2005]

hvao)

[qps ~ exp ( T

Exponentially suppressed PS rate at low T:
manifestation of constrained dynamics in |D
but cannot account the experimental results on ID “He

|18



Phase Diagram
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Required Formulation

- Include quantum&thermal fluctuations beyond the

leading exponential

- Include explicitly the potential due to the container wall
(in D=2 the wall effect can be replaced by

a boundary condition, but NOT in I D)
- Include the interaction among particles (*He atoms)

- Take the conserved (or nearly conserved) quantities into
account properly

- Consider finite-frequency response

Memory-matrix formulation based on TL

Liquid theory . .
cf.) conductivity [Rosch-Andrei 2000]
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What to calculate?

(Total) Momentum Response Function
X(t) =~ 50T, TO)) =Y,

measures the response of the system to the
perturbation in the effective Hamiltonian

- h2
H = E :(%(ﬁﬂrmﬁ)Q‘FU(ﬁ)) +- E V(7 —7)
' i>j

(7

1

normal fluid density  APn = — lim X(w)
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Tomonaga-Luttinger Liquid

. @ -l 2 2-
Ho= o / o | 1 (0:0)" + K(0:0)

Low-energy fixed point with 00 nhumber of conserved qtys

J = e /da: 0.0(x,1) particle mass current
/s

P — E /da: O $O 0 energy current

(s

Due to the curvature of the dispersion, total momentum is

K
D=J+ —2"p
T po
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Wall Potential

We assume periodic potential due to the wall
(reasonable for FEM-16 expt)

’?-l.?q” m ‘. s .
Hps = E — dx cos (2no(x) + Akpm) .

. ma
n>0.m 0

“irrelevant” in the RG sense, but is important since it
causes phase slips

J and P (and thus [1) are exactly conserved in
pure TLL (= fixed point Hamiltonian Hx), but not
conserved in the presence of Hps

Nevertheless, the decay is slow due to constrained
dynamics in |D -- how to describe!?
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Memory Matrix Formalism

(W) = Tr {V[wi + iM(w)]_liM(w))z(w)}

X ~ diag{xsJs, xppr}

A

M :2x2 matrix describing the decay rates
of two currents

Perturbative evaluation in Hps

cf.) D.Forster “Hydrodynamic fluctuations,....” (1975),
Rosch-Andrei (2000)
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w=wp = 2 kHz

K=4.2

K=9.2

Results

Expt. [Taniguchi et al. 2010]

e
e
-

[P MPa) -

* 0 . . L . . 0
DN e PRO00
AW=OONNONOONW=

Q=2 WO=0=00O0000-

/ 0.02
7 I I I I I I
l——r——————
osl i 0.01
| . A
06} <]
\ O
04}
02} g '
glo: o o o By DA 0:01
e 0 02 04 08 08
3
i v - g 4
- x L
G Q2 04 (1] Qs 1 : -
| | | | 1 1_‘
0 .2 04 06 0.8 | .S . WU 1 |
/3 ‘K] !

25




Double onset

Large incommensurability: Akig = 0.5a0
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Frequency Dependence

w = 104wy

w = 10%wq
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n ™ W - Lobos-Giamarchi (2005)
27 Danshita-Polkovnikov (201 1)




Frequency dependence (expt.)

J. Taniguchi et al. (private communications)

500Hz vs. 2000Hz pressure effect
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Frequency dependence (expt.)

J. Taniguchi et al. (private communications)

1
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141 p p
w 13
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Relevance to Cold Atoms

FeTEe 7 \ week ending
‘IRL94.120403(2005) e R R R I APRIL 2005

Strongly Inhibited Transport of a Degenerate 1D Bose Gas in a Lattice

C.D. Fertig, '2 K.M. O’Hara,"* J.H. Huckans,'” S. L. Rolston,"* W.D. Phillips. "2 and J. V. Porto'

'National Inmtute of Standards and Technology, Gaithersburg, Maryland 20899-8424, USA

*Univer sity of Maryland, College Park, Maryland 20742, USA
(Received 15 November 2004; published 1 April 2005)
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FIG. 1. Damped oscillations of a 1D Bose gas in an optical
lattice. Shown are plots of velocity versus wait time ¢,, from
t, =0 to 110 ms, and for axial lattice depths of (a) OFE.



Relevance to cold atoms
[ Tokuno-Giamarchi 201 | ]
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Frequency dependence may be probed
over a wider range, than
in torsional oscillator measurements of “He
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Relevance to “supersolid™?

Skew dislocations in solid 4He behaves as TLL
[Boninsegni et al. 2007] Dislocation network

6 A (“Shevchenko state™)
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Conclusions

- Helicity modulus in 1D vanishes (in thermodynamic
limit)

- Superfluidity in ID is essentially dynamical
phenomenon, related to absence of (or anomalously
slow) thermalization

- “Superfluid density” dependence on probe frequency is
predicted

- Momentum response couples to 2 conserved currents
in TLL / conservation broken by wall potential

- Qualitative agreement with 4He in 1D nanopore

- Possible relevance to dislocations in solid 4He, and to
cold atoms
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