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Question:

What is the reason to speak about localization if we in 
general do not know the space in which the system is localized ?

Need an invariant (basis independent) criterion of the localization



Part 4. 

Spectral Statistics  

and

Localization



E - spectrum (set of eigenvalues)

- mean level spacing

- ensemble averaging

- spacing between nearest 
neighbors

- distribution function of nearest 
neighbors spacing between

Spectral Rigidity

Level repulsion
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RANDOM MATRIX THEORY

N  N N  ∞
ensemble of Hermitian matrices 
with random matrix element

Spectral 
statistics



Orthogonal 
1

Poisson – completely 
uncorrelated 
levels
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RANDOM MATRICES

N  N matrices with random matrix elements. N  ∞

Ensemble

orthogonal

unitary

simplectic

Dyson Ensembles



1

2

4

realization

T-inv potential

broken T-invariance 
(e.g., by magnetic 
field)

T-inv, but with spin-
orbital coupling

Matrix elements

real

complex

2  2 matrices



1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 

two statistically independent variables ((H22- H11) and H12) 
should be small and thus
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Recall the Wigner – von Neumann noncrossing rule
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1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 

two statistically independent variables ((H22- H11) and H12) 
should be small and thus

3. Complex H12 (unitary ensemble)        both Re(H12) and 

Im(H12) are statistically independent      three independent 
random variables should be small
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Anderson  

Model

• Lattice - tight binding model

• Onsite energies  i - random

• Hopping matrix elements Iij
j i

Iij

-W < i <W
uniformly distributed

Q: What are the spectral statistics 

of a finite size Anderson model ?

Is there much in common between Random Matrices 
and Hamiltonians with random potential ?



I < Ic I > Ic

Insulator 
All eigenstates are localized

Localization length x

Metal
There appear states extended

all over the whole system

Anderson  Transition

The eigenstates, which  are 
localized at different places 

will not repel each other

Any two extended 
eigenstates repel each other

Poisson spectral statistics Wigner – Dyson spectral statistics

Strong disorder Weak disorder



Disorder W

Zharekeschev & Kramer.

Exact diagonalization of the Anderson model



Anderson transition in terms of 
pure level statistics

P(s)



Part 5. 

Quantum Chaos,      

Integrability and 

Localization



Random Matrices Atomic Nuclei

• Ensemble

• Ensemble averaging

•Spectral averaging (over )

•Particular quantum system

Nevertheless
Statistics of the nuclear spectra 
are almost exactly the same as the 
Random Matrix Statistics

Spectra: {E}

ATOMS

NUCLEI

Main goal is to classify the eigenstates in 
terms of the quantum numbers

For the nuclear excitations this program does 
not work

Wigner:
Study spectral statistics of a particular
quantum system – a given nucleus



sP(s)

Particular 
nucleus

166Er

Spectra of 
several 
nuclei 
combined 
(after 
spacing)
rescaling 
by the 
mean level

P(s)

N. Bohr, Nature 

137 (1936) 344.



Q: ?
Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Original 

answer:

These are systems with a 
large number of degrees of 
freedom, and therefore 
the  “complexity” is high

Later it

became

clear that

there exist very “simple” 
systems with as many as 2 
degrees of freedom (d=2), 
which demonstrate  RMT -
like spectral statistics



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated [ d one-dimensional 

problems [d integrals of motion

Chaotic 
Systems

The variables can not be separated [ there is only one 
integral of motion - energy

Examples

Sinai billiard

Kepler problem 
in magnetic field 

B

Stadium



Bohigas – Giannoni – Schmit conjecture

Chaotic 
classical analog

Wigner- Dyson 
spectral statistics

0

No quantum 
numbers except 

energy



Wigner-
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Quantum
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extended

Integrable Chaotic

All chaotic 
systems 
resemble 
each other.

All integrable 
systems are 
integrable in 
their own way
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Extended 
states:

Level repulsion, 
avoided crossings, 
Wigner-Dyson
spectral statistics
(random matrices)

Localized 
states:

Poisson
spectral statistics
No level repulsion

Invariant (basis independent) definition

nearest neighbor’s spacing s

p
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a
 - parameter

Example: 
Stadium – Localization in the angular momentum space.



Localization 
and diffusion 
in the angular 
momentum 
space

R
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Chaotic
stadium

Integrable circular billiard

1;0  

Diffusion in the angular 
momentum space

25D

Angular momentum is the 
integral of motion



Localization and 
diffusion in the 
angular momentum 
space

R

a
 0
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Chaotic
stadium

Integrable circular billiard

1;0  

Diffusion in the angular 
momentum space

25D

Angular momentum is the 
integral of motion

0.01
g=0.012

0.1
g=4

Poisson

Wigner-Dyson



Part 6. 

Many-Body Localization

a) Spin systems; Quantum Computer
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Perpendicular 
fieldRandom Ising model 
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- Pauli matrices,

Example: Random Ising model in the perpendicular field 

1

2

z

i  

Will not discuss today in detail

Without perpendicular field all         
commute with the Hamiltonian, i.e. 
they are integrals of motion

z
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Perpendicular 
fieldRandom Ising model 

in a parallel field

- Pauli matrices

 zi determines a site of an 
N-dimensional hypercube

Without perpendicular field 
all         commute with the 
Hamiltonian, i.e. they are 
integrals of motion
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Anderson Model on N-dimensional cube

Usually:
# of dimensions 

system linear size

d const

L

Here:
# of dimensions 

system linear size
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6-dimensional cube 9-dimensional cube



Part 6. 

Many-Body Localization

b) Interacting particles



Conventional Anderson Model

Basis: ,i i
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Hamiltonian: 0
ˆ ˆ ˆH H V 

•one particle,
•one level per site, 
•onsite disorder
•nearest neighbor hoping

labels 
sites

many (N) particles no
interaction. Individual 
energies    
are conserved }

N
conservation laws

“integrable system”
, 1,...k k N 




 EĤ

k

k

E n  


   

labels one-particle eigenstates;       - occupation numbers;  n  n 



Role of the interaction:

Basis:  Hamiltonian:
0 0

ˆ ˆ ˆ ˆ,H H V H E



   

Transitions between 
the “ideal gas” states   

Interaction:
,

, . ?

ˆ

n n

V I 

 

 



 

many (N) particles no
interaction. Individual 
energies    
are conserved }

N
conservation laws

“integrable system”
, 1,...k k N 




 EĤ

k

k

E n  

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labels one-particle eigenstates;       - occupation numbers;  n  n 

Localization in Fock space



Anderson model

Q: What is the lattice ?

Basis: 

Hamiltonian:
0

0

ˆ ˆ ˆ,

ˆ

H H V

H E



 

 



Interaction:
,

, . ?

ˆ

n n

V I 

 

 



 

Disorder + Weak Interaction 



Part 6. 

Many-Body Localization

c) Statistical mechanics



Main postulate of the Gibbs StatMech-
equipartition (microcanonical distribution): 

In the equilibrium all states with the same energy are 
realized with the same probability.

Without interaction between particles the equilibrium would 
never be reached – each one-particle energy is conserved.

Common believe: Even weak interaction should drive the 
system to the equilibrium. 

It might be not true for many-body 
localized states !!!



Localization in Fock space What does it mean?

•No two-body operator can cause transitions between many-body 
states that are close in energy.

•No dissipation due to the external field – ideal insulator (glass)

•The concept of the equilibrium looses its meaning – no relaxation 
to a thermal state.

•No entropy production

Temperature Energy 



Time-reversal symmetry = T-invariance 

Equations of motion 
are invariant under t t

Violation of the T-invariance 

For each classical trajectory 
there is another  trajectory, 
which is its inversion in time 

e.g. by magnetic field

H





x

t

t

Statistical mechanics – Irreversibility - arrow of time

   2 2r t r t 

2r t

Has nothing to do with the violation of the T-invariance

Has everything to do with the delocalization

The same is true for many body systems 

Extended states – irreversible dynamics
Localized states – dynamics is to some extent reversible



Heat Theorem Nerns, Einstein, Planck, Polany,…

“[Nernst is] not open to reason, because he is not 
enough of a logician’’ (‘‘der Vernunft nich zuga¨nglich
(zu wenig Logiker))”. Einstein, letter to Ehrenfest

Is it possible to reach zero temperature?

Is it possible to reach thermal equilibrium close to 
the ground state ?



Part 6. 

Many-Body Localization

d) Interacting fermions; 

phononless transport



Chemical
potential

Temperature dependence of the conductivity 

one-electron picture

DoS DoSDoS
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edge
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all states are localized
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Assume that all the states 
are localized;

e.g. d = 1,2
DoS

  TT  0

Temperature dependence of the conductivity 

one-electron picture



Inelastic processes
transitions between localized states



 energy

mismatch

(any mechanism)00  T



Phonon-assisted hopping

Any bath with a continuous spectrum of delocalized 
excitations down to w= 0 will give the same exponential





Variable Range 

Hopping
N.F. Mott (1968)

Optimized
phase volume

Mechanism-dependent
prefactor

 w 
w

  00 T



1. All one-electron states are localized

2. Electrons interact with each other

3. The system is closed (no phonons)

4. Temperature is low but finite

Given:

DC conductivity (T,w=0)
(zero or finite?)

Find:

Can hopping conductivity 
exist without phonons ?

Common 
belief:

Anderson 
Insulator 
weak e-e 
interactions

Phonon assisted
hopping transport



A#1:   Sure

Q: Can e-h pairs lead to phonon-less variable range 
hopping in the same way as phonons do ?

1. Recall phonon-less 
AC conductivity:
Sir N.F. Mott (1970)

2. Fluctuation Dissipation Theorem: 
there should be Johnson-Nyquist noise

3. Use this noise as a bath instead of phonons

4. Self-consistency (whatever it means)



A#2: No way (L. Fleishman. P.W. Anderson (1980))

Q: Can e-h pairs lead to phonon-less variable range 
hopping in the same way as phonons do ?

A#1:   Sure

is contributed by 
rare resonances

R 

R
matrix 
element 
vanishes

0

Except maybe Coulomb interaction in 3D

a
bg

d



No 
phonons

No 
transport 

T
???

Problem:
If  the localization 
length exceeds    , 
then – metal.

In a metal e–e 
interaction leads to    
a finite

L

L

}
At high enough 
temperatures   
conductivity should 
be finite even 
without phonons



A#2: No way (L. Fleishman. P.W. Anderson (1980))

Q: Can e-h pairs lead to phonon-less variable range 
hopping in the same way as phonons do ?

A#1: Sure

A#3: Finite temperature Metal-Insulator Transition

(Basko, Aleiner, BA (2006))

insulator

Drude

metal

0



insulator

Drude

metal
Interaction 
strength

Localization
spacing

  1
 d

Many body 

localization!

Many body  wave functions are 
localized in functional space

Finite temperature Metal-Insulator Transition

0

Insulator   

not

Definitions:
0 

0d dT 

Metal   

not

0 

0d dT 



• many particles,
• several levels 

per site, 
• onsite disorder
• local 

interaction

0Ĥ E


 

Many body  Anderson-like Model

Basis: 

0,1in 
Hamiltonian:

0 1 2
ˆ ˆ ˆH H V V  

 in 
labels 
sites

occupation 
numbers

i
labels 
levels
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2V̂



Stability of the insulating phase:
NO spontaneous generation of broadening

0)(  

is always a solution
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linear stability analysis
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

After n iterations of 
the equations of the 
Self Consistent  
Born Approximation
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T
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
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23

first

then
(…) < 1 – insulator is stable !
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Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon – one electron hop

It is maybe correct at low temperatures, but the higher 
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical 

number of pairs created nc (i.e. the number of hops) 
increases. Thus phonons create cascades of hops.

Typical size 
of the 
cascade

Localization 
length
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Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon – one electron hop

It is maybe correct at low temperatures, but the higher 
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical 

number of pairs created nc (i.e. the number of hops) 
increases. Thus phonons create cascades of hops.

At some temperature 
This is the critical temperature. 
Above    one phonon creates 
infinitely many pairs, i.e., phonons 
are not needed for charge transport.

  . TnTT cc

cT


