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1. Introduction
2. Anderson Model; Anderson Metal and Anderson Insulator
3. Localization beyond the real space. Integrability and chaos.
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Classical Quantum
Integrable Integrable
Ho =H,(T); ol/et=0 ZE WW\ ) =|T)
Perturbation Per"rur'bahon
V: aifat#0 \7=;Vﬂ (V|
KAM Localized
Ergodic (chaotic) Extended ?




What is the reason to speak about localization if we in ?
general do not know the space in which the system is localized

Need an invariant (basis independent) criterion of the localization



Part 4.

Spectral Statistics
and

Localization




RANDOM MATRIX THEORY.

ensemble of Hermitian matrices

N xN with random matrix element N — o
E, - spectrum (set of eigenvalues)
0, = <E05+1 — Ea> - mean level spacing
< ...... > - ensemble averaging
g — E,.—E, - spacing between nearest

- S neighbors

1

P(S) - distribution function of nearest

neighbors spacing between

Spectral Rigidity [HEEI)EL

Level repulsion P(s<<1)ecs” =124
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RANDOM MATRICES

N x N matrices with random matrix elements. /N — o0

Dyson Ensembles

Matrix elements Ensemble [  realization

real orthogonal 1 T-inv potential

2 x 2 matrices simplectic 4 T-inv, but with spin-
orbital coupling



Reason for P(S) — 0 when S>>0

(Hll H12\

N
Il

E,—E = \/(sz — H11)2 +‘H12‘2

LN N

Recall the Wigner - von Neumann noncrossing rule

1. The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

2. If Hy, is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((Hy,- Hy;) and Hy,)
should be small and thus P(S) oC S IB -1
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Reason for P(S) — 0 when S>>0

(Hll H12\

2

N
Il

E,-E, =\/(H22 — H11)2 +‘H12‘

LN N

1. The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

2. If Hy, is real (orthogonal ensemble), then for S to be small

two statistically independent variables ((Hy,- Hy;) and Hy,)
should be small and thus P(S) oC S ,B -1

3. Complex Hy, (unitary ensemble) == both Re(H;,) and

Im(H,,) are statistically independent = three mdependent
random variables should be small = P(S) oc 5% [ =2



Anderson + Lattice - tight binding model
- Onsite energies & - random

» Hopping matrix elements |ij

| Zéfé- -W < g <W

uniformly distributed

Is there much in common between Random Matrices
and Hamiltonians with random potential ?

" What are the spectral statistics ?
s of afinite size Anderson model



Andersen ilransition

Strong disorder Weak disorder
1 <1 1> 1
Insulator Metal
All eigenstates are localized There appear states extended

Localization length }; all over the whole system

The eigenstates, which are Any two extended
localized at different places eigenstates repel each other
will not repel each other

d J

Poisson spectral statistics Wigner — Dyson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

3D cube of volume 20x20x20
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P(s)

Anderson transition In terms of

pure level statistics

metal, W=>5
critical, 16.5
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Part 5.

Quantum Chaos,
Integrability and

Localization




Main goal is to classify the eigenstates in
ATOMS ‘rermsgof the quan’rumynurr\ber'sg

For the nuclear excitations this program does
NEISIR=T not work —

- W Study spectral statistics of a particular e ;
ngner' quantum system - a given nucleus -,

Spectra: {E _}

Random Matrices Atomic Nuclel
Ensemble *Spectral averaging (over &)
- Ensemble averaging Particular guantum system

NV Statistics of the nuclear spectra

are almost exacﬂz the same as the
Random Matrix Statistics
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" theory (RMT) works so well ’7
" for nuclear spectra -

. These are systems with a
Original large number of degrees of
answer: freedom, and therefore

the “complexity” is high

Q Why the random matrix

| ater it  there exist very “simple”
systems with as many as 2

became degrees of freedom (d=2)

clear that which demonstrate RMT .
like spectral statistics



Classical Dynamical Systems with degrees of freedom

Inteqrable The variables can be separated = d one-dimensional
Systems problems = O integrals of motion
Rectangular and circular billiard, Kepler problem, .. .,
1d Hubbard model and other exactly solvable models, . .

o ElJ (W The variables can not be separated = there is only one
Systems integral of motion - energy

Examples T B

Kepler problem
in magnetic field

Sinai billiard Stadium



Bohigas — Giannoni — Schmit conjecture
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O. Bohigas, M, J. Giannoni, and C. Schmit
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{Received 2 August 1983)

It is found that the level fluctuations of the quantum Sinai’s billiard are consistent with
the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces
the belief that level fluctuation laws are universal.

In

summary, the question at issue is to prove or dis- : }
prove the following conjecture: Spectra of time- ngner Dyson
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Classical Quantum

?
Integrable <= Poisson
? Wigner-

Chaotic <

Dyson

0 0.5 1 1.5 2 2.5 3



Integrable Chaotic

All chaotic
systems
resemble
billiard each other.

billiard

All integrable
systems are

integrable in =%
their own Way extended

Disordered
localized




y

Disordered
localized

Square
billiard

Disordered

Localized extended Localized
momentum space extended real space

POISSON e PoissSon  se—

2 0.5}

Fi>)




Spectral statistics

—_—

' Wig'ner '
Poisson

Level repulsion,
Extended avoided crossings,
states: Wigner-Dyson
spectral statistics
(random matrices)

o
oo

o
~

o
N

: Poisson
L:f :-:Iezse:d spectral statistics

o level repulsion

probability density P (S)

o

0.5 1 1.5 2 2.5 3

o

nearest neighbor’s spacing S

Invariant (basis independent) definition



Example:

Stadium - Localization in the angular momentum space.

E = - parameter

a
R
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Chaotic
g >0 stadium

M
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g — (0 Integrable circular billiard

Angular momentum is the
integral of motion

h=0 e<<l1

Diffusion in the angular
momentum space

D OC(C,'S/Z

Localization
and diffusion
in the angular
momentum
space
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®Part 6.

Many-Body Localization
a) Spin systems; Quantum Computer



Example: Random Ising model in the perpendicular field

Will not discuss today in detail

H:iB&uZJU 6 +|i =H +|i

1=l I¢J i=1
[Fer">endlcu|ﬂ
Random Ising model field

in a parallel field

. . iy
- Pauli matrices, o’ =+=

2
1=12,...N: N>>1

Without perpendicular field all G
commute with the Hamiltonian, i.e.
they are integrals of motion



=1
Perpepdiculﬂ
Random Ising model field
in a parallel field

= : . Without, perpendicular field
O; - Pauli matrices all IG ’ commu‘l'ehwith the
. : Hamiltonian, i.e. they are
1=12,.,N; N>>1 intfegrals of motion

o determines a site of an
i N-dimensional hypercube



=1 - 1] i=1 ! i—1 !
W ng’}gp diculﬂ
Random Ising model field

in a parallel field

~ : : Without, perpendicular field
O; - Pauli matrices all O izpcolznmu‘l'e with the
i 19 N N >>1 Hamiltonian, i.e. they are

integrals of motion

And‘erson.MOdel on {Giz} determines a site
N-dimensional cube

A X A 4 A —
O =0 +0O
H, ({Gi }) :
perp. —, hoping between
onsite energy field nearest neighbors



Anderson Model on N-dimensional cube
Usually: Here:

# of dimensions d —const # of dimensions d=N —>o

system linear size L — « system linear size L=1






Part 6.
Many-Body Localization

b) Interacting particles



Conventional Anderson Model

*one particle
one level per site

‘onsite diSO_r,delé | | Basis: ‘ I> ’ lgﬁgf 6@66
‘nearest nelgthor hOAplng ) |:|0 _ Zgi‘ixi‘ @@@@
Hamiltonian:H = H, +V | @@®®

V=21 ©EO

i, j=n.n
many (N) particles no N H=> E,|u)u]
interaction. Ilr(idividual conservation laws “
energies &,,K =1,...N cx — 3 5
are conserved integrable system E, = Zk:gk — Zgana

a labels one-particle eigenstates; n_-occupation numbers; u={na}



many (N) particles no N H =2 E,|u)fu]
interaction. Individual conservation laws

energies &,k =1,...N .- h - -
are conserved integrable system E, = Zk:gk — Zgana
na}

~N—

a labels one-particle eigenstates; n_ - occupation numbers; u=

Role of the interaction: [JTNES VTSRl
I_A|o +V, I:IO = ZEW’W"
7

Interaction:v = % 1 |u)(u

u,u'=n.n?

Basis: ‘ /1> Hamiltonian:H

Localization in Fock space



Disorder + Weak Interaction

Basis: ‘,u>

Hamiltonian:

Interaction

vV

+V,

I>

Ho Eg o 1) (4]
i ﬂ,u;.n? IW/ ‘/U> <,U’

Anderson model

Q: What is the lattice ?



Part 6.
Many-Body Localization

¢) Statistical mechanics



Main postulate of the Gibbs StatMech-
equipartition (microcanonical distribution):

In the equilibrium all states with the same energy are
realized with the same probability.

Without interaction between particles the equilibrium would
never be reached - each one-particle energy is conserved.

Common believe: Even weak interaction should drive the
system to the equilibrium.

It might be not true for many-body
localized states



Localization in Fock space What does it mean?

*No two-body operator can cause transitions between many-body
states that are close in energy.

*No dissipation due to the external field — ideal insulator (glass)

*The concept of the equilibrium looses its meaning — no relaxation
to a thermal state.

*No entropy production

Temperature <= Energy



Time-reversal symmetry = T-invariance

For each classical trajectory
{ <~ —1 there is another tra Jectory,
which is its inversion in time

Equations of motion
are invariant under

e

Vlolatlon JRUECHERVERERIEE ¢ g. by magnetic field

O e




Statistical mechanics — - arrow of time

Has nothing to do with the violation of the T-invariance

Has to do with the

Extended states - irreversible dynamics
Localized states - dynamics is to some extent reversible

The same is true for many body systems



sEIMBalElolgelfgl  Nerns, Einstein, Planck, Polany,...

"[Nernst is] not open to reason, because he is not
enough of a logician” ("der Vernunft nich zuga“nglich
(zu wenig Logiker))”. Einstein, letter to Ehrenfest

Is it possible to reach zero temperature?

Is it possible to reach thermal equilibrium close to ?

the ground state



Part 6.
Many-Body Localization

d) Interacting fermions;
phononless transport



Temperature dependence of the conductivity

one-electron picture
[ Mobility
> edge
7//

(T -0)>0 G(T)OC e_cT

there are extended states all states are localized

4 4

| >1, I <l




Temperature dependence of the conductivity

onhe-electron picture

Assume that all the states
are localized:

eg. d=172

’//////ﬁ

DoS

=3

o )=O VT



Inelastic processes

transitions between localized states

S B — lf f energy
———————————————————— — ' tch
. €T T 3 o misma
—0— e
—o— —— —o—

T=0 = o=(0 @nymechanism)



Phonon-assisted hopping

] -
Variable Range o(T) exp | — % d
Hopping T
N.F. Mott (1968) _ _
Mechanism-dependent Optimized
prefactor phase volume
delocalized

excitations =0



Anderson
Comm‘?" Insulator => Phonon assisted
JTAICAE weak e-e hopping transport

interactions

Can hopping conductivity 7
o

exist

Given: 1. All one-electron states are localized
2. Electrons interact with each other
3. The system is closed (no phonons)
4. Temperature is low but finite

Find: DC conductivity o(T,@=0)
(zero or finite?)



Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?

Sure

1. Recall phonon-less

A_C conductivity: o (W) = e’ z(iZQ hw 21nd—|—1 O¢
Sir N.F. Mott (1970) h 5C i

2. Fluctuation Dissipation Theorem:
there should be Johnson-Nyquist noise

3. Use this noise as a bath instead of phonons

4. Self-consistency (whatever it means)



Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?

Sure

No way (L. Fleishman. P.W. Anderson (1980))
Except maybe Coulomb interaction in 3D

2 d—2 2
h
o (w) >~ ‘ ;;C ( w) In¢tl

O¢ is contributed by
hw rare resonances

R > ”
Wzgﬁ—fa:fv_fd

R 5( d-l-il_
R—>oo — element => o(T) x exp | — (T)

vanishes i



No é{) No

phonons transport

>If the localization
length exceeds |_ ,
then - metal. ¢

At high enough
temperatures
conductivity should
be finite even
without phonons

>In a metal e-e
interaction leads to

a finite ng




Q: Can e-h pairs lead to variable range

hopping in the same way as phonons do ?

Sure
No way (L. Fleishman. P.W. Anderson (1980))

Finite temperature Metal-Insulator Transition

o(T)|

(Basko, Aleiner, BA (2006))

<—insulator—

o=0(

v




Finite temperature Metal-Insulator Transition

Many body wave functions are
localized in functional space

Drude

—

Interaction
)\ << strength

metal

5{ — (Vé/d )_1Localization

spacing

>

¢ T

Definitions:
Insulator o =0 Metal o =#0
not do/dT <0 not do/dT >0



 many particles,
e several levels

Many body Anderson-like Model

cveral @@@ Basis: ‘,u>
. onsite disorder @@@@ U= { nf‘}

e |ocal

interaction @@@@ ilabels Otlabels
sites levels

Hamiltonian: o occupation
~ o~ o~ H o= n° =0,1
S, Fo= SE L, % =01 imber

()

v(u))=|n —1nf =10 41, 41,




Stability of the insulating phase:

NO spontaneous generation of broadening

[ (¢)=0 E>E+In
Is always a solution linear stability analysis
I I
>mo(e—<& )+

(6-&,) +T° (6-&,)°
After N iterations of / \"
the equations of the n AT 1
Self Consistent P, (I') oc —1_,3/2 const 5— In z
Born Approximation \ ¢ J

first m — OO _ _
<1- |
then m — O (...) <1 —insulator is stable !



Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon - one electron hop

It is maybe correct at low temperatures, but the higher
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical

number of pairs created N_ (i.e. the number of hops)
increases. Thus phonons create cascades of hops.

Typical size Localization——
of the

cascade length




Physics of the transition: cascades

Conventional wisdom:
For phonon assisted hopping one phonon - one electron hop

It is maybe correct at low temperatures, but the higher
the temperature the easier it becomes to create e-h pairs.

Therefore with increasing the temperature the typical

number of pairs created N_ (i.e. the number of hops)
increases. Thus phonons create cascades of hops.

At some temperature | =Tc N (T)
This is_the critical temperature. —4 -
Above T; one phonon creates
infinitely many pairs, i.e., phonons

are not needed for charge transport.




